方法记录。。

****SA-NET: Shuffle Attention For Deep Convolutional Neural Networks
论文地址:https://arxiv.org/pdf/2102.00240.pdf
将输入特征分成组,每一组的特征进行split,分为两个分支,分别计算channel attention和spatial attention,两种attention都使用可训练的参数。将两个分支的结果concat到一起然后合并,得到与输入尺寸一样的feature map。最后,用一个 shuffle 层进行通道 Shuffle。
==========是否可以对时间和空间都进行attention,同时get到两种方式的优点。
****MUSE: Parallel Multi-Scale Attention for Sequence to Sequence Learning[3]
论文地址:https://arxiv.org/abs/1911.09483
主要解决的是 Self-Attention(SA)只有全局捕获能力的缺点。如下图所示,当句子长度变长时,SA 的全局捕获能力变弱,导致最终模型性能变差。因此,作者在文中引入了多个不同感受野的一维卷积来捕获多尺度的局部 Attention,以此来弥补 SA 在建模长句子能力的不足。
==========是否可以对帧之间用不同的感受野

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值