卷积的三种类型:full,same,valid

valid
滑动步长为S,图片大小为N1xN1,卷积核大小为N2xN2,卷积后图像大小:(N1-N2)/S+1 x (N1-N2)/S+1

该卷积的padding = 0

valid卷积,即仅使用每个卷积的有效部分.

 

same
滑动步长为1,图片大小为N1xN1,卷积核大小为N2xN2,卷积后图像大小:N1xN1 

 

full
滑动步长为1,图片大小为N1xN1,卷积核大小为N2xN2,卷积后图像大小:(N1+N2-1) x (N1+N2-1)


原文链接:https://blog.csdn.net/weixin_40519315/article/details/104469365

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值