【复变函数与积分变换】02. 解析函数

2 解析函数

2.1 复变函数

复变函数的定义

D D D 是复平面中的一个点集,对于 D D D 中的每一个 z z z ,按照一定的规律,有一个或多个 w w w 的值与之对应,则称 w w w 为定义在 D D D 上的复变函数,记作: w = f ( z ) w = f(z) w=f(z)

代数形式:
w = f ( z ) = f ( x + i y ) = u ( x ,   y ) + i v ( x ,   y ) w= f(z) = f(x + iy) = u(x,\,y) + iv(x,\, y) w=f(z)=f(x+iy)=u(x,y)+iv(x,y)
指数形式:
w = u ( r   c o s   θ ,   r   s i n   θ ) + i v ( r   c o s   θ ,   r   s i n   θ ) = P ( r ,   θ ) + i Q ( r ,   θ ) w=u(r\,{\rm cos}\,\theta,\,r\,{\rm sin}\,\theta)+iv(r\,{\rm cos}\,\theta,\,r\,{\rm sin}\,\theta)=P(r,\,\theta)+iQ(r,\,\theta) w=u(rcosθ,rsinθ)+iv(rcosθ,rsinθ)=P(r,θ)+iQ(r,θ)
极限的定义

设函数 w = f ( z ) w = f(z) w=f(z) 定义在 z 0 z_0 z0 的去心邻域 D = { z ; 0 < ∣ z − z 0 ∣ < ρ } D=\{z;0 < |z − z_0| < \rho\} D={ z;0<zz0<ρ} 内。如过存在一确定的数 A A A ,对于任意的 ϵ > 0 \epsilon > 0 ϵ>0 ,存在正数 δ ( ϵ ) ∈ ( 0 ,   ρ ] \delta(\epsilon)\in(0,\,\rho] δ(ϵ)(0,ρ] ,使得当 0 < ∣ z − z 0 ∣ < δ 0 < |z − z_0| < \delta 0<zz0<δ 时,
∣ f ( z ) − A ∣ < ϵ |f(z) − A| < \epsilon f(z)A<ϵ
则称 A A A f ( z ) f(z) f(z) z z z 趋向于 z 0 z_0 z0 时的极限,记作
lim ⁡ z → z 0 f ( z ) = A \lim_{z\to z_0} f(z) = A zz0limf(z)=A

  • 极限的几何意义:当 z → z 0 z\to z_0 zz0 时极限的存在性,要求 z z z z 0 z_0 z0 δ \delta δ 去心邻域中沿任何路径趋近于 z 0 z_0 z0 f ( z ) f(z) f(z) 均以 A A A 为极限。

连续的定义

设函数 w = f ( z ) w = f(z) w=f(z) 在区域 D D D 中由定义, z 0 ∈ D z_0\in D z0D ,若 lim ⁡ z → z 0 f ( z ) = f ( z 0 ) \displaystyle\lim_{z\to z_0} f(z) = f(z_0) zz0limf(z)=f(z0) ,则 f ( z ) f(z) f(z) z 0 z_0 z0 处连续。若 f ( z ) f(z) f(z) 在区域 D D D 内处处连续,则 f ( z ) f(z) f(z) D D D 内连续。

  • 函数 f ( z ) = u ( x ,   y ) + i v ( x ,   y ) f(z) = u(x,\, y) + iv(x,\, y) f(z)=u(x,y)+iv(x,y) z 0 = x 0 + i y 0 z_0 = x_0 + iy_0 z0=x0+iy0 处连续的充要条件是 u ( x ,   y ) u(x,\, y) u(x,y) v ( x ,   y ) v(x,\, y) v(x,y) ( x 0 ,   y 0 ) (x_0,\, y_0) (x0,y0) 处连续。

定理:当 f ( z ) f(z) f(z)有界闭区域 D ‾ \overline{D} D 上连续时,它的模 ∣ f ( z ) ∣ |f(z)| f(z) D ‾ \overline{D} D 上也连续、有界且可以取到最大值与最小值。即存在常数 M > 0 M>0 M>0 ,使 ∣ f ( z ) ∣ ≤ M    ( z ∈ D ‾ ) |f(z)|\leq M\ \ (z\in\overline{D}) f(z)M  (zD)

  • 注意:如果把条件 f ( z ) f(z) f(z) 在闭区域 D ‾ \overline{D} D 上的连续改为在 D D D 内的连续时,则 ∣ f ( z ) ∣ |f(z)| f(z) 不一定有界。

  • 反例: f ( z ) = 1 z − 1 f(z)=\displaystyle\frac{1}{z-1} f(z)=z11 在单位圆内连续但无界。

  • 有界闭区域 D D D 上的连续函数必一致连续

2.2 解析函数

导数的定义

设区域 D D D 是函数 w = f ( z ) w = f(z) w=f(z) 的定义域, z 0 ∈ D z_0 \in D z0D z 0 + Δ z ∈ D z_0+\Delta z \in D z0+ΔzD 。若如下极限存在,
lim ⁡ Δ z → 0 Δ w Δ z = lim ⁡ Δ z → 0 f ( z 0 + Δ z ) − f ( z 0

  • 5
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值