Contents
5 留数
5.1 孤立奇点的分类及其性质
孤立奇点的分类
如果函数 f ( z ) f(z) f(z) 虽然在 z 0 z_0 z0 不解析,但在 z 0 z_0 z0 的某一个去心邻域 { 0 < ∣ z − z 0 ∣ < δ } \{0 < |z − z_0| < \delta\} { 0<∣z−z0∣<δ} 内处处解析,则 z 0 z_0 z0 称为 f ( z ) f(z) f(z) 的孤立奇点。
如果 z 0 z_0 z0 是 f ( z ) f(z) f(z) 的孤立奇点,则在 z 0 z_0 z0 的某个去心邻域 { z ; 0 < ∣ z − z 0 ∣ < δ } \{z;0<|z-z_0|<\delta\} {
z;0<∣z−z0∣<δ} 内, f ( z ) f(z) f(z) 可以展开成洛朗级数
f ( z ) = ∑ n = − ∞ + ∞ C n ( z − z 0 ) n = ∑ n = − ∞ − 1 C n ( z − z 0 ) n + ∑ n = 0 + ∞ C n ( z − z 0 ) n f(z)=\sum_{n=-\infty}^{+\infty}C_n(z-z_0)^n=\sum_{n=-\infty}^{-1}C_n(z-z_0)^n+\sum_{n=0}^{+\infty}C_n(z-z_0)^n f(z)=n=−∞∑+∞Cn(z−z0)n=n=−∞∑−1Cn(z−z0)n+n=0∑+∞Cn(z−z0)n
有以下三种情况:
(1) f ( z ) f(z) f(z) 的洛朗级数的主部为零,此时称 z 0 z_0 z0 为 f ( z ) f(z) f(z) 的可去奇点。
- lim z → z 0 f ( z ) = C 0 \displaystyle\lim_{z\to z_0}f(z)=C_0 z→z0limf(z)=C0
(2) f ( z ) f(z) f(z) 的洛朗级数的主部只有有限项,且其中关于 ( z − z 0 ) − 1 (z-z_0)^{-1} (z−z0)−1 的最高幂次为 m m m ,即
f ( z ) = C − m ( z − z 0 ) − m + . . . + C − 1 ( z − z 0 ) − 1 + ∑ n = 0 + ∞ C n ( z − z 0 ) n f(z)=C_{-m}(z-z_0)^{-m}+...+C_{-1}(z-z_0)^{-1}+\sum_{n=0}^{+\infty}C_n(z-z_0)^n f(z)=C−m(z−z0)−m+...+C−1(z−z0)−1+n=0∑+∞Cn(z−z0)n
m ≥ 1 , C − m ≠ 0 m\geq1\ , \ C_{-m}\neq0 m≥1 , C−m=0 ,此时称 z 0 z_0 z0 为 f ( z ) f(z) f(z) 的 m m m 级奇点。
- lim z → z 0 f ( z ) = ∞ \displaystyle\lim_{z\to z_0}f(z)=\infty z→z0limf(z)=∞
- f ( z ) f(z) f(z) 可以写成
f ( z ) = g ( z ) ( z − z 0 ) m = ∑ n = 0 ∞ C n − m ( z − z 0 ) n ( z − z 0 ) m f(z)=\frac{g(z)}{(z-z_0)^m}=\frac{\displaystyle\sum_{n=0}^\infty C_{n-m}(z-z_0)^n}{(z-z_0)^m} f(z)=(z−z0)mg(z)=(z−z0)mn=0∑∞Cn−m(z−z0)n
- 其中 g ( z ) g(z) g(z) 在 ∣ z − z 0 ∣ < δ |z-z_0|<\delta ∣z−z0∣<δ 内是解析函数,且 g ( z 0 ) ≠ 0 g(z_0)\neq0 g(z0)=0
(3) f ( z ) f(z) f(z) 的洛朗级数的主部有无穷多项,此时称 z 0 z_0 z0 为 f ( z ) f(z) f(z) 的本性奇点。
- lim z → z 0 f ( z ) \displaystyle\lim_{z\to z_0}f(z) z→z0limf(z) 不存在(不是 ∞ \infty ∞ )
一个总结:我们可以利用复变函数极限的不同情形来判别孤立奇点的类型。
- 如果 z 0 z_0 z0 为 f ( z ) f(z) f(z) 的可去奇点 ⟺ \boldsymbol{\iff} ⟺ lim z → z 0 f ( z ) \displaystyle\lim_{z\to z_0}f(z) z→z0limf(z) 存在且有限
- 如果 z 0 z_0 z0 为 f ( z ) f(z) f(z) 的极点 ⟺ \boldsymbol{\iff} ⟺ lim z → z 0 f ( z ) = ∞ \displaystyle\lim_{z\to z_0}f(z)=\infty