【复变函数与积分变换】05. 留数

本文详细介绍了复变函数中的留数理论,包括孤立奇点的分类(可去奇点、极点、本性奇点)及其性质,留数定理以及如何利用留数计算定积分。留数定理是连接复分析与实积分的重要桥梁,通过解析延拓和变量变换,可以将实积分转化为回路积分,并利用留数计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

5 留数

5.1 孤立奇点的分类及其性质

孤立奇点的分类

如果函数 f ( z ) f(z) f(z) 虽然在 z 0 z_0 z0 不解析,但在 z 0 z_0 z0 的某一个去心邻域 { 0 < ∣ z − z 0 ∣ < δ } \{0 < |z − z_0| < \delta\} { 0<zz0<δ} 内处处解析,则 z 0 z_0 z0 称为 f ( z ) f(z) f(z)孤立奇点

如果 z 0 z_0 z0 f ( z ) f(z) f(z) 的孤立奇点,则在 z 0 z_0 z0 的某个去心邻域 { z ; 0 < ∣ z − z 0 ∣ < δ } \{z;0<|z-z_0|<\delta\} { z;0<zz0<δ} 内, f ( z ) f(z) f(z) 可以展开成洛朗级数
f ( z ) = ∑ n = − ∞ + ∞ C n ( z − z 0 ) n = ∑ n = − ∞ − 1 C n ( z − z 0 ) n + ∑ n = 0 + ∞ C n ( z − z 0 ) n f(z)=\sum_{n=-\infty}^{+\infty}C_n(z-z_0)^n=\sum_{n=-\infty}^{-1}C_n(z-z_0)^n+\sum_{n=0}^{+\infty}C_n(z-z_0)^n f(z)=n=+Cn(zz0)n=n=1Cn(zz0)n+n=0+Cn(zz0)n
有以下三种情况:

(1) f ( z ) f(z) f(z) 的洛朗级数的主部为零,此时称 z 0 z_0 z0 f ( z ) f(z) f(z) 的可去奇点。

  • lim ⁡ z → z 0 f ( z ) = C 0 \displaystyle\lim_{z\to z_0}f(z)=C_0 zz0limf(z)=C0

(2) f ( z ) f(z) f(z) 的洛朗级数的主部只有有限项,且其中关于 ( z − z 0 ) − 1 (z-z_0)^{-1} (zz0)1 的最高幂次为 m m m ,即
f ( z ) = C − m ( z − z 0 ) − m + . . . + C − 1 ( z − z 0 ) − 1 + ∑ n = 0 + ∞ C n ( z − z 0 ) n f(z)=C_{-m}(z-z_0)^{-m}+...+C_{-1}(z-z_0)^{-1}+\sum_{n=0}^{+\infty}C_n(z-z_0)^n f(z)=Cm(zz0)m+...+C1(zz0)1+n=0+Cn(zz0)n
m ≥ 1   ,   C − m ≠ 0 m\geq1\ , \ C_{-m}\neq0 m1 , Cm=0 ,此时称 z 0 z_0 z0 f ( z ) f(z) f(z) m m m 级奇点。

  • lim ⁡ z → z 0 f ( z ) = ∞ \displaystyle\lim_{z\to z_0}f(z)=\infty zz0limf(z)=
  • f ( z ) f(z) f(z) 可以写成

f ( z ) = g ( z ) ( z − z 0 ) m = ∑ n = 0 ∞ C n − m ( z − z 0 ) n ( z − z 0 ) m f(z)=\frac{g(z)}{(z-z_0)^m}=\frac{\displaystyle\sum_{n=0}^\infty C_{n-m}(z-z_0)^n}{(z-z_0)^m} f(z)=(zz0)mg(z)=(zz0)mn=0Cnm(zz0)n

  • 其中 g ( z ) g(z) g(z) ∣ z − z 0 ∣ < δ |z-z_0|<\delta zz0<δ 内是解析函数,且 g ( z 0 ) ≠ 0 g(z_0)\neq0 g(z0)=0

(3) f ( z ) f(z) f(z) 的洛朗级数的主部有无穷多项,此时称 z 0 z_0 z0 f ( z ) f(z) f(z) 的本性奇点。

  • lim ⁡ z → z 0 f ( z ) \displaystyle\lim_{z\to z_0}f(z) zz0limf(z) 不存在(不是 ∞ \infty

一个总结:我们可以利用复变函数极限的不同情形来判别孤立奇点的类型。

  • 如果 z 0 z_0 z0 f ( z ) f(z) f(z) 的可去奇点    ⟺    \boldsymbol{\iff} lim ⁡ z → z 0 f ( z ) \displaystyle\lim_{z\to z_0}f(z) zz0limf(z) 存在且有限
  • 如果 z 0 z_0 z0 f ( z ) f(z) f(z) 的极点    ⟺    \boldsymbol{\iff} lim ⁡ z → z 0 f ( z ) = ∞ \displaystyle\lim_{z\to z_0}f(z)=\infty
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值