【复变函数与积分变换】06. 拉普拉斯变换

本文详细介绍了拉普拉斯变换的概念、基本性质、卷积、逆变换及其在微分方程解法中的应用。通过拉普拉斯变换,可以将微分方程转化为代数方程进行求解,并探讨了其在信号处理和控制系统中的重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

6 拉普拉斯变换

6.1 基本概念

拉普拉斯变换的定义

拉普拉斯变换 LT
F ( s ) = L [ f ( s ) ] = ∫ 0 ∞ f ( t ) e − s t d t F(s)=L[f(s)]=\int_0^\infty f(t)e^{-st}dt F(s)=L[f(s)]=0f(t)estdt
拉普拉斯逆变换 ILT
f ( t ) = L − 1 [ F ( s ) ] f(t)=L^{-1}[F(s)] f(t)=L1[F(s)]
F ( s ) F(s) F(s) 在某一区域内收敛, F ( s ) F(s) F(s) 称为象函数, f ( t ) f(t) f(t) 称为象原函数。

LT 存在定理

若复值函数 f ( t ) f(t) f(t) 满足下列条件:

(1) 在 t ≥ 0 t\geq0 t0 的任意有限区间上分段连续;

(2) 当 t → + ∞ t\rightarrow+\infty t+ 时, f ( t ) f(t) f(t) 的增长速度不超过某一指数函数,即存在常数 M > 0 M>0 M>0 σ 0 ≥ 0 \sigma_0\geq0 σ00 ,使得
∣ f ( t ) ∣ ≤ M e σ 0 t        ( t ≥ 0 ) |f(t)|\leq Me^{\sigma_0t}\ \ \ \ \ \ (t\geq0) f(t)Meσ0t      (t0)
L [ f ( t ) ] L[f(t)] L[f(t)] 在半平面 R e ( s ) > σ 0 {\rm Re}(s)>\sigma_0 Re(s)>σ0 上存在且解析, σ 0 \sigma_0 σ0 称为函数 f ( t ) f(t) f(t) 的增长指数。

注意:LT 存在定理的条件是充分不必要条件。

说明:

σ = R e ( s ) \sigma = {\rm Re}(s) σ=Re(s) σ − σ 0 ≥ δ > 0 \sigma-\sigma_0\geq\delta>0 σσ0δ>0 ,由条件 (2) 可知,对于任何 t ≥ 0 t\geq0 t0 ,有
∣ f ( t ) e − s t ∣ = ∣ f ( t ) ∣ e − σ t ≤ M e − ( σ − σ 0 ) t ≤ M e − δ t |f(t)e^{-st}|=|f(t)|e^{-\sigma t}\leq Me^{-(\sigma-\sigma_0)t}\leq Me^{-\delta t} f(t)est=f(t)eσtMe(σσ0)tMeδt
所以
∫ 0 ∞ ∣ f ( t ) e − s t ∣ d t ≤ M ∫ 0 ∞ e − δ t d t = M δ \int_0^{\infty}|f(t)e^{-st}|dt \leq M\int_0^{\infty}e^{-\delta t}dt=\frac{M}{\delta} 0f(t)estdtM0eδtdt=δM
即积分 ∫ 0 ∞ f ( t ) e − s t d t \displaystyle\int_0^\infty f(t)e^{-st}dt 0f(t)estdt R e ( s ) ≥ σ 0 + δ {\rm Re}(s)\geq\sigma_0+\delta Re(s)σ0+δ 上绝对且一致收敛,且 F ( s ) = ∫ 0 ∞ f ( t ) e − s t d t F(s)=\displaystyle\int_0^\infty f(t)e^{-st}dt F(s)=0f(t)estdt 存在。

Γ \Gamma Γ 函数和 B e t a Beta Beta 函数

Γ \Gamma Γ 函数是工程中常用的特殊函数,其定义为
Γ ( a ) = ∫ 0 ∞ t a − 1 e − t d t      ( a > 0 ) \Gamma(a)=\int_0^\infty t^{a-1}e^{-t}dt \ \ \ \ (a>0) Γ(a)=0ta1etdt    (a>0)

Γ ( n + 1 ) = n !      ( n ∈ N ) \Gamma(n+1)=n! \ \ \ \ (n\in N) Γ(n+1)=n!    (nN)

B \Beta B 函数是工程中常用的特殊函数,其定义为
B ( α ,   β ) = ∫ 0 1 t α − 1 ( 1 − t ) β − 1 d t      ( α ,   β > 0 ) \Beta(\alpha,\,\beta)=\int_0^1 t^{\alpha-1}(1-t)^{\beta-1}dt \ \ \ \ (\alpha,\,\beta>0) B(α,β)=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值