Contents
6 拉普拉斯变换
6.1 基本概念
拉普拉斯变换的定义
拉普拉斯变换 LT
F ( s ) = L [ f ( s ) ] = ∫ 0 ∞ f ( t ) e − s t d t F(s)=L[f(s)]=\int_0^\infty f(t)e^{-st}dt F(s)=L[f(s)]=∫0∞f(t)e−stdt
拉普拉斯逆变换 ILT
f ( t ) = L − 1 [ F ( s ) ] f(t)=L^{-1}[F(s)] f(t)=L−1[F(s)]
F ( s ) F(s) F(s) 在某一区域内收敛, F ( s ) F(s) F(s) 称为象函数, f ( t ) f(t) f(t) 称为象原函数。
LT 存在定理
若复值函数 f ( t ) f(t) f(t) 满足下列条件:
(1) 在 t ≥ 0 t\geq0 t≥0 的任意有限区间上分段连续;
(2) 当 t → + ∞ t\rightarrow+\infty t→+∞ 时, f ( t ) f(t) f(t) 的增长速度不超过某一指数函数,即存在常数 M > 0 M>0 M>0 及 σ 0 ≥ 0 \sigma_0\geq0 σ0≥0 ,使得
∣ f ( t ) ∣ ≤ M e σ 0 t ( t ≥ 0 ) |f(t)|\leq Me^{\sigma_0t}\ \ \ \ \ \ (t\geq0) ∣f(t)∣≤Meσ0t (t≥0)
则 L [ f ( t ) ] L[f(t)] L[f(t)] 在半平面 R e ( s ) > σ 0 {\rm Re}(s)>\sigma_0 Re(s)>σ0 上存在且解析, σ 0 \sigma_0 σ0 称为函数 f ( t ) f(t) f(t) 的增长指数。
注意:LT 存在定理的条件是充分不必要条件。
说明:
设 σ = R e ( s ) \sigma = {\rm Re}(s) σ=Re(s) , σ − σ 0 ≥ δ > 0 \sigma-\sigma_0\geq\delta>0 σ−σ0≥δ>0 ,由条件 (2) 可知,对于任何 t ≥ 0 t\geq0 t≥0 ,有
∣ f ( t ) e − s t ∣ = ∣ f ( t ) ∣ e − σ t ≤ M e − ( σ − σ 0 ) t ≤ M e − δ t |f(t)e^{-st}|=|f(t)|e^{-\sigma t}\leq Me^{-(\sigma-\sigma_0)t}\leq Me^{-\delta t} ∣f(t)e−st∣=∣f(t)∣e−σt≤Me−(σ−σ0)t≤Me−δt
所以
∫ 0 ∞ ∣ f ( t ) e − s t ∣ d t ≤ M ∫ 0 ∞ e − δ t d t = M δ \int_0^{\infty}|f(t)e^{-st}|dt \leq M\int_0^{\infty}e^{-\delta t}dt=\frac{M}{\delta} ∫0∞∣f(t)e−st∣dt≤M∫0∞e−δtdt=δM
即积分 ∫ 0 ∞ f ( t ) e − s t d t \displaystyle\int_0^\infty f(t)e^{-st}dt ∫0∞f(t)e−stdt 在 R e ( s ) ≥ σ 0 + δ {\rm Re}(s)\geq\sigma_0+\delta Re(s)≥σ0+δ 上绝对且一致收敛,且 F ( s ) = ∫ 0 ∞ f ( t ) e − s t d t F(s)=\displaystyle\int_0^\infty f(t)e^{-st}dt F(s)=∫0∞f(t)e−stdt 存在。
Γ \Gamma Γ 函数和 B e t a Beta Beta 函数
Γ \Gamma Γ 函数是工程中常用的特殊函数,其定义为
Γ ( a ) = ∫ 0 ∞ t a − 1 e − t d t ( a > 0 ) \Gamma(a)=\int_0^\infty t^{a-1}e^{-t}dt \ \ \ \ (a>0) Γ(a)=∫0∞ta−1e−tdt (a>0)Γ ( n + 1 ) = n ! ( n ∈ N ) \Gamma(n+1)=n! \ \ \ \ (n\in N) Γ(n+1)=n! (n∈N)
B \Beta B 函数是工程中常用的特殊函数,其定义为
B ( α , β ) = ∫ 0 1 t α − 1 ( 1 − t ) β − 1 d t ( α , β > 0 ) \Beta(\alpha,\,\beta)=\int_0^1 t^{\alpha-1}(1-t)^{\beta-1}dt \ \ \ \ (\alpha,\,\beta>0) B(α,β)=