文章目录
A R I M A {\rm ARIMA} ARIMA 模型
滞后算子
在这一节中,我们主要介绍时间序列分析中的几类经典的时间序列模型。为了简化模型设定,我们需要引入滞后算子的概念。
滞后算子的定义非常容易理解,满足以下性质:
- B X t = X t − 1 \mathscr{B}X_t=X_{t-1} BXt=Xt−1 ;
- B 2 X t = B ( B X t ) = B ( X t − 1 ) = X t − 2 \mathscr{B}^2X_t=\mathscr{B}(\mathscr{B}X_t)=\mathscr{B}(X_{t-1})=X_{t-2} B2Xt=B(BXt)=B(Xt−1)=Xt−2 ;
即称 B \mathscr{B} B 为时间 t t t 的向后推移算子或滞后算子。
引入滞后算子之后,我们可以定义滞后算子多项式如下:
- m m m 阶滞后算子多项式:
B ( B ) = b 0 + b 1 B + b 2 B 2 + ⋯ + b m B m = ∑ i = 0 m b i B i . B(\mathscr{B})=b_0+b_1\mathscr{B}+b_2\mathscr{B}^2+\cdots+b_m\mathscr{B}^m=\sum_{i=0}^mb_i\mathscr{B}^i \ . B(B)=b0+b1B+b2B2+⋯+bmBm=i=0∑mbiBi .
- 无穷阶滞后算子多项式:
B ( B ) = b 0 + b 1 B + b 2 B 2 + ⋯ = ∑ i = 0 ∞ b i B i . B(\mathscr{B})=b_0+b_1\mathscr{B}+b_2\mathscr{B}^2+\cdots=\sum_{i=0}^\infty b_i\mathscr{B}^i \ . B(B)=b0+b1B+b2B2+⋯=i=0∑∞biBi .
- 特别地,若 ∣ φ ∣ < 1 |\varphi|<1 ∣φ∣<1 ,根据 Taylor 级数计算公式有:
1 1 − φ B = 1 + φ B + φ 2 B 2 + φ 3 B 3 + . . . . \frac{1}{1-\varphi\mathscr{B}}=1+\varphi\mathscr{B}+\varphi^2\mathscr{B}^2+\varphi^3\mathscr{B}^3+... \ . 1−φB1=1+φB+φ2B2+φ3B3+... .
在滞后算子的基础上,我们可以逐一讨论时间序列模型。
M A ( q ) {\rm MA}(q) MA(q) 模型
首先我们讨论滑动平均模型的性质,滞后阶数为 q q q 的滑动平均模型简称为 M A ( q ) {\rm MA}(q) MA(q) 模型。在计量经济学所研究的时间序列模型中,一般滞后阶数不会很高,所以我们先从 M A ( 1 ) {\rm MA}(1) MA(1) 模型开始讨论,其性质更为重要也更便于讨论。
M A ( 1 ) {\rm MA}(1) MA(1) 模型
一般地, M A ( 1 ) {\rm MA}(1) MA(1) 模型的模型设定如下:
y t = u t + θ u t − 1 , y_t=u_t+\theta u_{t-1} \ , yt=ut+θut−1 ,
u t ∼ W N ( 0 , σ 2 ) . u_t\sim{\rm WN}(0,\,\sigma^2) \ . ut∼WN(0,σ2) .
其中, { u t } \{u_t\} { ut} 是白噪声序列。满足上述模型设定的序列 { y t } \{y_t\} { yt} 称为 M A ( 1 ) {\rm MA}(1) MA(1) 序列。
首先,我们讨论 M A ( 1 ) {\rm MA}(1) MA(1) 序列的平稳性,通过计算我们可以得到 { y t } \{y_t\} { yt} 序列具有如下性质:
- E ( y t ) = 0 {\rm E}(y_t)=0 E(yt)=0 ;
- V a r ( y t ) = ( 1 + θ 2 ) σ 2 {\rm Var}(y_t)=(1+\theta^2)\sigma^2 Var(yt)=(1+θ2)σ2 ;
- γ ( k ) = C o v ( y t , y t + k ) = E [ ( u t + θ u t − 1 ) ( u t + k + θ u t + k − 1 ) ] = { θ σ 2 , k = 1 0 , k ≥ 2 \gamma(k)={\rm Cov}(y_t,\,y_{t+k})={\rm E}[(u_t+\theta u_{t-1})(u_{t+k}+\theta u_{t+k-1})]= \left\{ \begin{array}{lll} \theta\sigma^2 &, & k=1\\ 0 &,& k\geq2 \end{array} \right. γ(k)=Cov(yt,yt+k)=E[(ut+θut−1)(ut+k+θut+k−1)]={ θσ20,,k=1k≥2 .
因此, M A ( 1 ) {\rm MA}(1) MA(1) 序列是一个平稳时间序列。可以看出, M A ( 1 ) {\rm MA}(1) MA(1) 序列的自协方差函数是 1 1 1 步截尾的。根据已经计算得到的自协方差函数,可以计算自相关函数 ACF :
ρ ( k ) = γ ( k ) γ ( 0 ) = { θ 1 + θ 2 , k = 1 0 , o t h e r w i s e . \rho(k)=\frac{\gamma(k)}{\gamma(0)}= \left\{ \begin{array}{lll} \dfrac{\theta}{1+\theta^2} &, & k=1\\ 0 &,& {\rm otherwise} \end{array} \right. \ . ρ(k)=γ(0)γ(k)=⎩⎨⎧1+θ2θ0,,k=1otherwise .
可以看出 M A ( 1 ) {\rm MA}(1) MA(1) 序列的 ACF 也是 1 1 1 步截尾的。
对于 M A ( 1 ) {\rm MA}(1) MA(1) 序列,如果 ∣ θ ∣ < 1 |\theta|<1 ∣θ∣<1 ,称 { y t } \{y_t\} { yt} 为可逆的 M A ( 1 ) {\rm MA}(1) MA(1) 序列。下面我们利用滞后算子的推导方式来讨论 M A ( 1 ) {\rm MA}(1) MA(1) 序列的可逆性质。
可以用滞后算子表示 M A ( 1 ) {\rm MA}(1) MA(1) 序列并进行“逆变换”
y t = ( 1 + θ B )