【应用随机过程】08. 功率谱密度

本文详细介绍了功率谱密度的概念,包括傅里叶变换、确定性信号和平稳过程的功率谱密度定义。通过维纳-辛钦公式揭示了时域与频域统计规律的联系,探讨了δ函数在功率谱密度中的作用,并定义了白噪声及其特性。
摘要由CSDN通过智能技术生成

第八讲 功率谱密度

一、功率谱密度的定义

Part 1:傅里叶变换

之前我们对于平稳过程的研究,主要讨论了其自相关函数在时域上的性质。而这一节我们主要介绍平稳过程的自相关函数在频域上的等价描述,两者之间的联系就是傅里叶变换。首先了解一些概念。

设信号 x ( t ) x(t) x(t) 是时间的函数, t ∈ R t\in\mathbb{R} tR ,满足狄利克雷条件,且 ∫ − ∞ ∞ ∣ x ( t ) ∣ d t < ∞ \displaystyle\int_{-\infty}^\infty|x(t)|{\rm d}t<\infty x(t)dt< ,则称 x ( t ) x(t) x(t) 的傅里叶变换存在或称 x ( t ) x(t) x(t) 具有频谱。

狄利克雷条件括三方面:

  1. 在一周期内,连续或只有有限个第一类间断点;
  2. 在一周期内,极大值和极小值的数目应是有限个;
  3. 在一周期内,信号是绝对可积的

定义傅里叶变换为
F x ( ω ) = ∫ − ∞ ∞ x ( t ) e − i ω t d t   , − ∞ < ω < ∞   . F_x(\omega)=\int_{-\infty}^\infty x(t)e^{-i\omega t} {\rm d}t \ , \quad -\infty<\omega<\infty \ . Fx(ω)=x(t)eiωtdt ,<ω< .
定义傅里叶逆变换为
x ( t ) = 1 2 π ∫ − ∞ ∞ e i ω t F x ( ω ) d ω   , − ∞ < t < ∞   . x(t)=\frac{1}{2\pi}\int_{-\infty}^\infty e^{i\omega t}F_x(\omega){\rm d}\omega \ , \quad -\infty<t<\infty \ . x(t)=2π1eiωtFx(ω)dω ,<t< .
其中 ω \omega ω 称为圆频率, F x ( ω ) F_x(\omega) Fx(ω) 称为信号 x ( t ) x(t) x(t) 的频谱。

信号 x ( t ) x(t) x(t) 与频谱 F x ( ω ) F_x(\omega) Fx(ω) 之间有 Parseval 等式成立:
∫ − ∞ ∞ x 2 ( t ) d t = 1 2 π ∫ − ∞ ∞ ∣ F x ( ω ) ∣ 2 d ω   . \int_{-\infty}^{\infty}x^2(t){\rm d}t=\frac1{2\pi}\int_{-\infty}^\infty\left|F_x(\omega)\right|^2{\rm d}\omega \ . x2(t)dt=2π1Fx(ω)2dω .

这里 x 2 ( t ) x^2(t) x2(t) 的含义是信号在 t t t 时刻的功率,因此积分 ∫ − ∞ ∞ x 2 ( t ) d t \displaystyle\int_{-\infty}^{\infty}x^2(t){\rm d}t x2(t)dt 含义是信号的总能量。

Parseval 等式表明信号的总能量等于各谐分量能量的叠加。

Part 2:确定性信号的功率谱密度

因为在工程技术中,通常会出现总能量 ∫ − ∞ ∞ x 2 ( t ) d t = ∞ \displaystyle\int_{-\infty}^{\infty}x^2(t){\rm d}t=\infty x2(t)dt= 的情况,而信号的平均功率一般是有限的。所以我们需要改变研究对象,转向对平均功率的研究,其定义式为
lim ⁡ T → ∞ 1 2 T ∫ − T T x 2 ( t ) d t < ∞   . \lim_{T\to\infty}\frac{1}{2T}\int_{-T}^Tx^2(t){\rm d}t<\infty \ . Tlim2T1TTx2(t)dt< .
为此利用傅里叶变换给出平均功率的谱表达式

x ( t ) x(t) x(t) 的截尾函数:
x T ( t ) = { x ( t )   , ∣ t ∣ ≤ T   , 0   , ∣ t ∣ > T   . x_T(t)=\left\{\begin{array}{ll} x(t) \ , & |t|\leq T \ , \\ 0 \ , & |t|>T \ . \end{array} \right. xT(t)={ x(t) ,0 ,tT ,t>T .
x T ( t ) x_T(t) xT(t) 的傅里叶变换为
F x ( ω , T ) = ∫ − ∞ ∞ x T ( t ) e − i ω t d t = ∫ − T T x ( t ) e − i ω t d t   . F_x(\omega,T)=\int_{-\infty}^\infty x_T(t)e^{-i\omega t}{\rm d}t=\int_{-T}^Tx(t)e^{-i\omega t}{\rm d}t \ . Fx(ω,T)=xT(t)eiωtdt=TTx(t)eiωtdt .
写出 x T ( t ) x_T(t) xT(t) 的 Parseval 等式为
∫ − ∞ ∞ x T 2 ( t ) d t = ∫ − T T x 2 ( t ) d t = 1 2 π ∫ − ∞ ∞ ∣ F x ( ω , T ) ∣ 2 d ω   . \int_{-\infty}^{\infty}x_T^2(t){\rm d}t=\int_{-T}^{T}x^2(t){\rm d}t=\frac1{2\pi}\int_{-\infty}^\infty\left|F_x(\omega,T)\right|^2{\rm d}\omega \ . xT2(t)dt=TTx2(t)dt=2π1Fx(ω,T)2dω .
对等式两边除以 2 T 2T 2T 再令 T → ∞ T\to\infty T ,可得 x ( t ) x(t) x(t) ( − ∞ , ∞ ) (-\infty,\infty) (,) 上的平均功率的谱表达式:
lim ⁡ T → ∞ 1 2 T ∫ − T T x T 2 ( t ) d t = lim ⁡ T → ∞ 1 4 π T ∫ − ∞ ∞ ∣ F x ( ω , T ) ∣ 2 d ω = 1 2 π ∫ − ∞ ∞ lim ⁡ T → ∞ 1 2 T ∣ F x ( ω , T ) ∣ 2 d ω   . \lim_{T\to\infty}\frac{1}{2T}\int_{-T}^{T}x_T^2(t){\rm d}t=\lim_{T\to\infty}\frac1{4\pi T}\int_{-\infty}^\infty\left|F_x(\omega,T)\right|^2{\rm d}\omega=\frac1{2\pi}\int_{-\infty}^\infty\lim_{T\to\infty}\frac{1}{2T}\left|F_x(\omega,T)\right|^2{\rm d}\omega \ . Tlim2T1TTxT2(t)dt=Tlim4πT1Fx(ω,T)2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值