强化学习入门(六):Q-learning系列算法3:连续动作(NAF)

本文介绍了一种处理连续动作优化问题的算法——Normalized Advantage Functions (NAF)。NAF通过引入新的网络结构,解决了传统Q-learning在面对连续动作空间时的局限性。文章详细解释了NAF如何将Q值分解为状态值函数V和动作价值函数A,以及其执行过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是在https://blog.csdn.net/acl_lihan/article/details/104076938的基础上进行了部分改动,加上了一点个人理解,原博客写的非常好,不妨一同查阅。

普通的Q-learning比policy gradient比较容易实现,但是在处理连续动作(比如方向盘要转动多少度)的时候就会显得比较吃力。

因为如果action是离散的几个动作,那就可以把这几个动作都代到Q-function去算Q-value。但是如果action是连续的,此时action就是一个vector,vector里面又都有对应的value,那就没办法穷举所有的action去算Q-value。

本文就介绍一个用来处理连续动作的算法Normalized Advantage Functions(NAF)
当然,最常见的处理方法还是不使用Q-learning而使用actor-critic

一、NAF算法

设计一个新的网络来解连续动作的最优化问题。

先给出概念如下,后面再讲具体的。

在这里插入图片描述 (公式3-1)

此时Q value 由状态值函数V与动作价值函数 A 相加而得。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值