学习记录——BiSeNetV1、BiSeNetV2、BiSeNetV3、PIDNet、CMNeXt

本文详细介绍了BiSeNetV1-V3的网络结构及其改进,包括Spatial Path和Context Path的设计,以及特征融合模块。BiSeNetV2的亮点在于Guided Aggregation。BiSeNetV3提出了STDCNet短时密集聚合模块。PIDNet受到PID控制器启发,具有比例、积分、微分三个分支,解决双分支模型的超调问题。CMNeXt则是一个针对任意模态语义分割的非对称架构模型,具有Self-Query Hub和Parallel Pooling Mixer模块。
摘要由CSDN通过智能技术生成

BiSeNetV1

BiSeNetV1为了在不影响速度的情况下,同时收集到空间信息和语义信息,设计了两条路:
Spatial Path: 用了三层stride为 2 的卷积,卷积+BN+RELU模块。最后提取了相当于原图像 1/8 的输出特征图。由于它利用了较大尺度的特征图,所以可以编码比较丰富的空间信息,并生成高分辨率特征图。
Contex Path: 上下文路径的backbone可以替换成任意的轻量网络,比如 Xception,ShuffleNet 系列,MobileNet 系列。可以看到,为了准确率考虑,Context Path 这边使用了类似 U-shape 结构的设计,最终进行了32倍下采样。不过,不同于普通的 U-shape,此处只结合了最后两个 Stage,这样设计的原因主要是考虑速度。值得注意的是,Context Path 依然在最后使用了 Global Average Pooling 来聚合特征、降维、减计算量,看下图中的ARM模块,通过全局池化+卷积+BN+sigmoid模块,设计了一个注意力机制(类似SENet),来学习每个通道特征的重要性。
Feature Fusion Module(特征融合) 在特征的不同层级给定的情况下,每层输出特征都有各自的重要性。特征融合模块首先连接 S p a t i a l P a t h Spatial PathSpatialPath 和 C o n t e x t P a t h Context PathContextPath 的输出特征,接着,通过批归一化平衡特征的尺度。下一步,像 SENet 一样,把相连接的特征池化为一个特征向量,并计算一个权重向量。这一权重向量可以重新加权特征,起到特征选择和结合的作用。在这里插入图片描述

BiSeNetV2

双边引导聚合网络。重点在 Guided Aggregation上。
论文中重新简述了语义分割的的一些发展。
如下图a中,利用空洞卷积可以扩大感受野的能力,来替换下采样和上采样操作。
B图还是熟悉的Unet网络结构
C图就是BiSeNet中双端网络,一条路提取空间细节信息,另一条路提取语义抽象信息
在这里插入图片描述

网络结构

在这里插入图片描述
还是标准的双边网络,一条路负责细节信息,另一条路负责语义信息

Detail Branch 三次下采样,最终下采用8倍,设计是遵循 宽而短 的原则。文中解释,这条路是为了获取细节信息,所有网络需要宽,也就意味着有更多的卷积核来提取细节特征。
Semantic Branch 4次下采样,最终下采样 16倍, 设计是遵循 窄而长的原则。原因是这条路为了提取深层次的语义特征,对网络深度有要求,为了效率速度,可以牺牲网络的宽度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chaoy6565

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值