早在十几年前,中国移动就着手建设了以数据仓库技术为核心的经营分析系统。这几年大数据的话题非常火爆,业界也非常关注运营商在大数据领域的探索和实践。
今年5.17"世界电信与信息社会日"的主题确定为"发展大数据,扩大影响力(Big Data for Big Impact)",所以启动一个新的连载,说说我对这方面的理解。
按照电信运营商习惯的建设模式,做一件事情往往先要有技术规范标准,然后才是项目建设。所以2001年底虽然写完了业务和技术规范,但项目启动则是另一码事。
第二部分:建设数据仓库
(一)内部沟通
虽说国外很多企业都搞过数据仓库,但毕竟没有通行的国际标准,国内也鲜有成功案例,因此说要砸下几十个亿,对于运营商来说,这个决心并不好下。
而且,从技术角度来看,BOSS系统已经有了所有的数据,有必要再建一套数据仓库系统,存放同样的数据么?
为了说服计划部门立项,我们总结出一套"菜地理论",来解释数据仓库的概念。
我们把IT生产系统比喻成为"菜地"。每块菜地都是按照专业化分工的方式进行生产,这一片全是白菜,那一片全是萝卜,这样的设计,施肥除虫都可以"批处理",工作效率高,产量上得去。
而数据分析不能只根据单一的维度来组织,就像厨师炒菜,不可能什么都是清炒,需要将不同的原材料组织在一起。
以往的数据分析工作模式,就像是厨师到菜地里直接采摘原材料,分析人员要从生产系统里取数,不仅分析工作的效率低,弄不好还会影响菜地完成生产任务。
如今建设数据仓库,相当于在菜地之外再修一个菜市场,由专人将蔬菜从菜地里采集、清洗、转换、运输——就是ETL(清洗加载转换)——之后,在菜市场重新摆放。
而在菜市场里可以按照蔬菜的使用便利性要求重新摆放,从技术上来说就是在数据仓库建设时可以根据OLAP(Online Analytical Processing)的方式重新设计数据结构。
菜市场建成之后,厨师可以直接去菜市场买原材料,也可以开一个单子让助理拿着菜篮子去采购。
这个菜篮子,就是数据集市。
根据分析的要求,我们就可以从中提取部分数据,再重新建模用于专题分析。
比起枯燥的技术介绍,这种通俗的类比模式,或许更能打动人。
在说服计划部门之后,我们还拿这套"菜地理论"向省公司的领导解释数据仓库,效果颇佳。再加上有BOSS集中化的成功案例,有山西等省先导性项目作为样板,各个省公司纷纷立项启动经营分析系统建设。
(二)外部协作
有很多人以为,甲方一声令下,就能召集各方资源趋之若鹜。其实,每个企业的资源都是有限的,看到了商机不可不跟踪,但是否投入大干一场,可是要慎重的。
而数据仓库系统建设规模庞大,项目周期长,那些以"搏一把"的心态来参与的厂商,未必能最终坚持下来。
所以,在进行外部合作伙伴的选择之前,制定合理的合作伙伴策略更加关键。
以经营分析系统建设为例,在合作伙伴的管理策略方面有这么几个特点:
一是组织进行合作伙伴的入围选型。
中国移动在进行BOSS系统建设时,并没有进行合作伙伴的限制,只是明确提出一个省只能选择一个集成商,具体是哪个,各省自定。而数据仓库系统建设相对技术门槛更高,当时没有几家集成商能确保完成。
所以,总部组织入围选型,与其说是帮各省公司进行厂商的初选,倒不如说是对行业合作伙伴的培训,而本质是统一各方的建设思路,希望全网的技术方案和工作模式保持一致。
二是将数据仓库系统建设,命名为经营分析系统。
之所以没有直接将系统命名为数据仓库,是因为当时的数据源还主要来自于业务支撑系统,没有接入财务、网络等支撑系统,数据并不完整,而数据的使用者也主要来自于业务部门。
在这种情况下,不把名字取大,除了避免不必要的部门之间的冲突,也有利于长期与业务支撑部门合作的厂商参与。
三是引导厂商的技术方案以业务为重心。
这一方面,由于数据仓库建设初期要以数据的ETL为主,如果对业务了解程度不够,或者和BOSS厂商配合不佳,都会直接导致项目陷入困境。
另一方面,单纯的技术和算法并不能给企业带来直接效益,最终经营分析系统的价值还是要通过业务来体现。通过多维报表展现业务现状,准确判断分析存在的问题和可能的商机,这是移动公司对数据仓库最直接的期望。
除此之外,还有很多技巧和策略,在各方的努力之下,用了三年时间,经营分析系统终于在全国范围开花结果。
结语:
经营分析系统在全国落地,每个项目前前后后都有很多故事。但将一个体系规划落地与实施一个具体项目不同。不仅需要考虑技术方案、商务条款和客户关系,还要考虑产业生态,平衡各方利益,根据目标有步骤地开展内外部的沟通协调和引导工作。
这就像下围棋,棋力不仅在于算度的精准,更在于对大局的掌控,对关键环节的判断方面。否则即使局部胜了,整体失控,最终结果还是败局。