深度学习自然语言处理基础知识(图论)

本文介绍了NLP前置知识——图论的基础概念,包括无向图、有向图、连通图和树的定义。无向图如G=(N,E),有向图如D=(N,E),连通图确保图中任意两点间有路径相连,而树是无回路的连通无向图,根树则是有根节点的特殊树形结构。" 132128815,9654670,ModaGPT:一键调用魔搭社区大模型的开源助手,"['大模型', 'AI-native', '开源软件', '深度学习', '模型平台']
摘要由CSDN通过智能技术生成

深度学习自然语言处理基础知识

NLP前置基础(图论)

无向图

无向图 G可以定义为一个二元组G=(N,E),其中,N是顶点的非空有限集合;E是边的有限集合。
G=(N,E)
N={V1,V2,V3,V4,V5,V6}
E={(V1,V2),(V1,V3),(V1,V4),(V2,V5),(V3,V4),(V3,V5),(V3,V6),(V4,V6),(V5,V6)}
无向图

有向图

有向图 D可以定义为一个二元组D=(N,E),其中,N是顶点的非空有限集合,E是边的有限集合。
D=(N,E)
N={V1,V2,V3,V4,V5,V6}
E={(V1,V2),(V1,V5),…,(V5,V3),(V5,V6)}
有向图

连通图

连通图是一个无向图G=(N,E)或有向图D=(N,E),对于N中的任意两个顶点,存在一个顶点的序列 P,(肉眼可见的连接)&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值