Wannafly挑战赛24 无限手套(生成函数)

无限手套

每 种 宝 石 的 生 成 函 数 为 ∑ n ≥ 0 x n ( a i n 2 + b i n + 1 ) 对 其 进 行 化 简 ∑ n ≥ 0 x n + ∑ n ≥ 0 b i n x n + ∑ n ≥ 0 a i n 2 x n 1 1 − x + b i x ( 1 − x ) 2 + a i x ( 1 + x ) ( 1 − x ) 3 最 后 答 案 ∏ i = 1 m ( ( a i − b i + 1 ) x 2 + ( a i + b i − 2 ) x + 1 ) ( 1 − x ) 3 m 每种宝石的生成函数为\sum_{n \geq 0} x ^ n(a_i n ^ 2 + b_i n + 1)\\ 对其进行化简\sum_{n \geq 0} x ^ n + \sum_{n \geq 0} b_i n x ^ n + \sum_{n\geq 0} a_i n ^ 2 x ^ n\\ \frac{1}{1 - x} + \frac{b_i x}{(1 - x) ^ 2} + \frac{a_ i x (1 + x)}{(1 - x) ^ 3}\\ 最后答案\frac{\prod\limits_{i = 1} ^{m} \left((a_i - b_i + 1) x ^ 2 + (a_i + b_i - 2) x + 1 \right)}{(1 - x) ^{3m}}\\ n0xn(ain2+bin+1)n0xn+n0binxn+n0ain2xn1x1+(1x)2bix+(1x)3aix(1+x)(1x)3mi=1m((aibi+1)x2+(ai+bi2)x+1)

#include <bits/stdc++.h>

using namespace std;

const int N = 1e5 + 10, mod = 998244353;

int fac[N], inv[N];

int quick_pow(int a, int n) {
  int ans = 1;
  while (n) {
    if (n & 1) {
      ans = 1ll * ans * a % mod;
    }
    a = 1ll * a * a % mod;
    n >>= 1;
  }
  return ans;
}

int C(int n, int m) {
  if(n < 0 || m < 0 || m > n) return 0;
  if(m == 0 || m == n)    return 1;
  return 1ll * fac[n] * inv[m] % mod * inv[n - m] % mod;
}

void init() {
  fac[0] = 1;
  for(int i = 1; i < N; i++)
    fac[i] = 1ll * fac[i - 1] * i % mod;
  inv[N - 1] = quick_pow(fac[N - 1], mod - 2);
  for(int i = N - 2; i >= 0; i--)
    inv[i] = 1ll * inv[i + 1] * (i + 1) % mod;
}

int A[N], n, m;

int main() {
  // freopen("in.txt", "r", stdin);
  // freopen("out.txt", "w", stdout);
  // ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
  init();
  scanf("%d", &m);
  A[0] = 1;
  for (int i = 1, a, b; i <= m; i++) {
    scanf("%d %d", &a, &b);
    int x = (a - b + 1 + mod) % mod, y = (a + b - 2) % mod, z = 1;
    for (int i = 2 * m; i >= 2; i--) {
      A[i] = (1ll * A[i - 2] * x % mod + 1ll * A[i - 1] * y % mod + 1ll * A[i] * z % mod) % mod;
    }
    A[1] = (1ll * A[0] * y % mod + 1ll * A[1] * z % mod) % mod;
    A[0] = 1ll * A[0] * z % mod;
  }
  int T;
  scanf("%d", &T);
  while (T--) {
    scanf("%d", &n);
    int ans = 0;
    for (int i = 0; i <= n; ++i) {
      ans = (ans + 1ll * C(3 * m + i - 1, i) * A[n - i] % mod) % mod;
    }
    printf("%d\n", ans);
  }
  return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值