级数_1:级数的基本概念和基本性质

级数基本概念

设u1,u2 ⋯ \cdots un ⋯ \cdots 是一个数列,则 ∑ n = 1 ∞ \sum_{n=1}^\infty n=1un称为级数。un为级数的通项(一般项)Sn = ∑ n = 1 n \sum_{n=1}^n n=1nuk 为级数的前n项部分和。

若有 lim ⁡ n → ∞ \lim\limits_{n\rightarrow\infty} nlimSn = S,则称级数收敛,S为级数的和,即 ∑ n = 1 ∞ \sum_{n=1}^\infty n=1un = S,反之,称级数发散。

若级数收敛,则rn = ∑ k = n + 1 ∞ \sum_{k=n+1}^\infty k=n+1uk = S - Sn 为级数余和,且 lim ⁡ n → ∞ \lim\limits_{n\rightarrow\infty} nlimrn = 0。

* 级数基本性质

  1. 若级数 ∑ n = 1 ∞ \sum_{n=1}^\infty n=1un收敛到S,级数 ∑ n = 1 ∞ \sum_{n=1}^\infty n=1vn收敛到T,则级数 ∑ n = 1 ∞ \sum_{n=1}^\infty n=1(αun+βvn) 收敛到 αS + βT(线性)。
  2. 将级数增加、删减或改换有限项,不改变级数的收敛性。
  3. 若级数收敛于S,则将相邻若干项相加作一项而组成的新级数仍然收敛与S(新级数为原级数的一个子列)。

* 收敛的必要条件

若级数 ∑ n = 1 ∞ \sum_{n=1}^\infty n=1un 收敛,则 lim ⁡ n → ∞ \lim\limits_{n\rightarrow\infty} nlimun = 0(一般项是无穷小)。

逆否命题: lim ⁡ n → ∞ \lim\limits_{n\rightarrow\infty} nlimun ≠ \ne = 0 或不存在 ⇒ \Rightarrow 级数发散。

注: lim ⁡ n → ∞ \lim\limits_{n\rightarrow\infty} nlimun = 0不一定能导出级数收敛(必要条件)。

* 解题方法

  1. 首先求出部分和Sn,若部分和极限存在,则收敛,且收敛的和为该极限值。
  2. 判断其一般项的极限是否趋于0,若极限不等于或不存在,则发散(反之不可行)。
  3. 将级数某些项适当缩小(放大),求和分析。

例: ∑ n = 1 ∞ 1 n \sum_{n=1}^\infty\frac{1}{n} n=1n1

解:

Sn = 1 + 1 2 \frac{1}{2} 21 + 1 3 \frac{1}{3} 31 + 1 4 \frac{1}{4} 41 + ⋯ \cdots + 1 n \frac{1}{n} n1

un = 1 n \frac{1}{n} n1 ⇒ \Rightarrow lim ⁡ n → ∞ \lim\limits_{n\rightarrow\infty} nlimun = 0

S2^k = 1 + 1 2 \frac{1}{2} 21 + 1 3 \frac{1}{3} 31 + 1 4 \frac{1}{4} 41 + 1 5 \frac{1}{5} 51 + ⋯ \cdots + 1 8 \frac{1}{8} 81 + 1 9 \frac{1}{9} 91 + ⋯ \cdots + 1 16 \frac{1}{16} 161 + 1 2 k − 1 \frac{1}{2^{k-1}} 2k11 + 1 2 k − 1 + 1 \frac{1}{2^{k-1}+1} 2k1+11 + ⋯ \cdots + 1 2 k \frac{1}{2^k} 2k1 (S2^k是Sn的一个子列)

1 3 \frac{1}{3} 31 1 4 \frac{1}{4} 41 组合, 1 5 \frac{1}{5} 51 1 8 \frac{1}{8} 81 组合, 1 9 \frac{1}{9} 91 1 16 \frac{1}{16} 161 组合 ⋯ \cdots 1 2 k − 1 + 1 \frac{1}{2^{k-1}+1} 2k1+11 1 2 k \frac{1}{2^k} 2k1 组合。(性质3)

1 3 \frac{1}{3} 31 缩小成 1 4 \frac{1}{4} 41 1 5 \frac{1}{5} 51 1 6 \frac{1}{6} 61 1 7 \frac{1}{7} 71 缩小成 1 8 \frac{1}{8} 81,以此类推。(方法3)

S2^k > \gt > 1 + 1 2 \frac{1}{2} 21 + ( 1 4 \frac{1}{4} 41 + 1 4 \frac{1}{4} 41) + ( 1 8 \frac{1}{8} 81 + ⋯ \cdots + 1 8 \frac{1}{8} 81) + ( 1 16 \frac{1}{16} 161 + ⋯ \cdots + 1 16 \frac{1}{16} 161) + ⋯ \cdots + ( 1 2 k \frac{1}{2^{k}} 2k1 + ⋯ \cdots + 1 2 k \frac{1}{2^k} 2k1) = 1 + 1 2 \frac{1}{2} 21 + 1 2 \frac{1}{2} 21 + ⋯ \cdots + 1 2 \frac{1}{2} 21 = 1 + k 2 \frac{k}{2} 2k → \rightarrow + ∞ \infty

S2^k → \rightarrow + ∞ \infty ⇒ \Rightarrow lim ⁡ n → ∞ \lim\limits_{n\rightarrow\infty} nlimSn 不存在。(发散)

补充

需记忆级数(后用于级数收敛性比较):

∑ n = 1 ∞ 1 n p \sum_{n=1}^\infty\frac{1}{n^p} n=1np1             ∑ n = 1 ∞ a q n \sum_{n=1}^\infty aq^n n=1aqn

补充性质
一收敛级数与发散级数相加必为发散。

若两发散级数相加则不一定发散。

收敛级数去括弧后所成级数不一定收敛。

(补充性质3)例:

( 1 − 1 ) + ( 1 − 1 ) + (1-1)+(1-1)+ (11)+(11)+ ⋯ \cdots = 0 =0 =0 收敛,但 1 − 1 + 1 − 1 + 1-1+1-1+ 11+11+ ⋯ \cdots 发散。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值