大物热力学基础笔记_1


太长不看版

绝热过程方程
p d V γ = c pdV^γ = c pdVγ=c
V γ − 1 T = c 2 V^{γ-1}T = c_2 Vγ1T=c2
p γ − 1 T − γ = c 3 p^{γ-1}T^{-γ} = c_3 pγ1Tγ=c3

绝热过程做功
W = − Δ E = − i 2 v R d T = p d V W = -\Delta E = -\frac {i}{2}vRdT = pdV W=ΔE=2ivRdT=pdV

热机效率
η = W Q 1 = 1 − Q 2 Q 1 η = \frac W{Q_1} = 1 - \frac{Q_2}{Q_1} η=Q1W=1Q1Q2

卡诺正循环效率
η = 1 − T 2 T 1 η = 1 - \frac{T_2}{T_1} η=1T1T2

制冷系数
ω = Q 2 W = Q 2 Q 1 + Q 2 \omega = \frac{Q_2}{W} = \frac{Q_2}{Q_1+Q_2} ω=WQ2=Q1+Q2Q2

卡诺制冷机制冷系数
ω = T 2 T 1 − T 2 \omega = \frac{T_2}{T_1-T_2} ω=T1T2T2


绝热过程

绝热过程

系统与外界无热量交换的过程称为绝热过程,

特征 d Q = d E + p d V = 0 dQ = dE + pdV = 0 dQ=dE+pdV=0          d W = − d E = p d V dW = -dE = pdV dW=dE=pdV

绝热过程靠减少内能来对外做功。

故由 Δ E = i 2 v R ( T 2 − T 1 ) \Delta E = \frac{i}2vR(T_2-T_1) ΔE=2ivR(T2T1)         得 W = − Δ E = − i 2 v R d T = p d V W = -\Delta E = -\frac {i}{2}vRdT = pdV W=ΔE=2ivRdT=pdV

气体对外做功,内能减少,温度下降,压强减小,该过程 p 、 V 、 T p、V、T pVT同时变化。

绝热过程摩尔热容: C Q = ( d Q d T ) Q = 0 C_Q =(\frac{dQ}{dT})_Q=0 CQ=(dTdQ)Q=0


绝热过程方程推导:

W = − Δ E = − i 2 v R d T = p d V W = -\Delta E = -\frac {i}{2}vRdT = pdV W=ΔE=2ivRdT=pdV ⋯ \cdots ⋯ \cdots

状态方程: p V = v R T pV=vRT pV=vRT

两边微分得: p d V + V d p = v R d T pdV+Vdp=vRdT pdV+Vdp=vRdT ⋯ \cdots ⋯ \cdots

①、②消去 d T dT dT得: p d V + V d p p d V = − R C V \frac{pdV+Vdp}{pdV}=-\frac{R}{C_V} pdVpdV+Vdp=CVR

⇒ \Rightarrow p d V + V d p = − R C V p d V pdV+Vdp=-\frac{R}{C_V}pdV pdV+Vdp=CVRpdV

⇒ \Rightarrow V d p = − ( 1 + R C V ) d V = − C p C V p d V = − γ p d V Vdp=-(1+\frac{R}{C_V})dV=-\frac{C_p}{C_V}pdV=-γpdV Vdp=(1+CVR)dV=CVCppdV=γpdV

V d p = − γ p d V Vdp=-γpdV Vdp=γpdV ⇒ \Rightarrow d p p + γ d V V = 0 \frac{dp}{p}+γ\frac{dV}{V}=0 pdp+γVdV=0

两边积分得: l n p + γ l n V = c lnp+γlnV=c lnp+γlnV=c ⇒ \Rightarrow p d V γ = c pdV^γ = c pdVγ=c ⋯ \cdots ⋯ \cdots

由③和状态方程消去 p p p得        V γ − 1 T = c 2 V^{γ-1}T=c_2 Vγ1T=c2 ⋯ \cdots ⋯ \cdots ④(该式是对于某一确定种类和量的气体,故 v v v可看作常量)

由③和状态方程消去 V V V得        p γ − 1 T − γ = c 3 p^{γ-1}T^{-γ}=c_3 pγ1Tγ=c3 ⋯ \cdots ⋯ \cdots

③、④、⑤称为绝热过程方程。( γ = C p C V γ=\frac{C_p}{C_V} γ=CVCp > 1 \gt1 >1


绝热线

绝热线

p V γ = c pV^γ=c pVγ=c 两边微分 ⇒ \Rightarrow V γ d p + γ p V γ − 1 d V = 0 V^γdp+γpV^{γ-1}dV=0 Vγdp+γpVγ1dV=0 ⇒ \Rightarrow V d p + γ p d V = 0 Vdp+γpdV=0 Vdp+γpdV=0

d p d V \frac{dp}{dV} dVdp ∣ A = − γ P A V A |_A=-γ\frac{P_A}{V_A} A=γVAPA

等温线

p V = c pV=c pV=c 两边微分 ⇒ \Rightarrow p d V + C d p = 0 pdV+Cdp=0 pdV+Cdp=0 ⇒ \Rightarrow d p d V \frac{dp}{dV} dVdp ∣ A = − P A V A |_A=-\frac{P_A}{V_A} A=VAPA

由于 γ > 1 γ\gt1 γ>1    故绝热线比等温线陡。

:绝热线与等温线只有一个交点。


气体向真空绝热自由膨胀过程中,由于绝热, d Q = 0 dQ=0 dQ=0,由因气体向真空自由膨胀,故 d W = 0 dW=0 dW=0。由此可得 d E = 0 dE=0 dE=0。即理想气体向真空自由膨胀后内能不变,即温度不变。且 p 1 V 1 = p 2 V 2 p_1V_1=p_2V_2 p1V1=p2V2


卡诺循环

循环过程:系统经过一系列状态变化后又回到初始状态的整个过程叫循环过程。

循环过程的物质系统统称为工作物质工质)。

循环中由于内能为状态量,故变化始末 Δ E = 0 \Delta E =0 ΔE=0


正循环

正循环过程 W > 0 W\gt0 W>0

净功 W W W p − V p-V pV 图中的循环面积,且由于 Δ E = 0 \Delta E=0 ΔE=0,故净热 Δ Q = W \Delta Q=W ΔQ=W

热机效率

η = W Q 1 = 1 − Q 2 Q 1 η = \frac W{Q_1} = 1 - \frac{Q_2}{Q_1} η=Q1W=1Q1Q2 Q 1 、 Q 2 Q_1、Q_2 Q1Q2分别为 A a B AaB AaB B b A BbA BbA 过程的净热)

由于 Q 2 ≠ Q 1 ≠ 0 Q_2\ne Q_1\ne 0 Q2=Q1=0     故 η < 1 η\lt 1 η<1


卡诺循环

卡诺循环由两个绝热过程和两个等温过程构成。工作物质只与两个恒定热源(一个高温一个低温)交换热量。

A 、 B A、B AB 过程,等温膨胀吸热,

Q 1 = m M R T 1 l n V 2 V 1 Q_1=\frac{m}{M}RT_1ln\frac{V_2}{V_1} Q1=MmRT1lnV1V2

C 、 D C、D CD 过程,等温压缩放热,

Q 2 = m M R T 2 l n V 3 V 4 Q_2=\frac{m}{M}RT_2ln\frac{V_3}{V_4} Q2=MmRT2lnV4V3

B C 、 D A BC、DA BCDA 过程绝热, Q = 0 Q=0 Q=0

故循环效率 η = W Q 1 = 1 − Q 2 Q 1 = 1 − T 2 l n V 3 V 4 T 1 l n V 2 V 1 η=\frac{W}{Q_1}=1-\frac{Q_2}{Q_1}=1-\frac{T_2ln\frac{V_3}{V_4}}{T_1ln\frac{V_2}{V_1}} η=Q1W=1Q1Q2=1T1lnV1V2T2lnV4V3

绝热过程中:

          B → C B\rightarrow C BC T 1 V 2 γ − 1 = T 2 V 3 γ − 1 T_1{V_2}^{γ-1}=T_2{V_3}^{γ-1} T1V2γ1=T2V3γ1
          D → A D\rightarrow A DA T 1 V 1 γ − 1 = T 2 V 4 γ − 1 T_1{V_1}^{γ-1}=T_2{V_4}^{γ-1} T1V1γ1=T2V4γ1

V 2 V 1 = V 3 V 4 \frac{V_2}{V_1}=\frac{V_3}{V_4} V1V2=V4V3

可得 η = W Q 1 = 1 − Q 2 Q 1 = 1 − T 2 T 1 η =\frac{W}{Q_1}=1-\frac{Q_2}{Q_1}= 1 - \frac{T_2}{T_1} η=Q1W=1Q1Q2=1T1T2

所以卡诺正循环效率为: η = 1 − T 2 T 1 η = 1 - \frac{T_2}{T_1} η=1T1T2


制冷剂采用的是逆循环

制冷剂功效用制冷系数 ω = Q 2 W = Q 2 Q 1 + Q 2 \omega = \frac{Q_2}{W} = \frac{Q_2}{Q_1+Q_2} ω=WQ2=Q1+Q2Q2 来衡量,

对于卡诺制冷机: ω = T 2 T 1 − T 2 \omega = \frac{T_2}{T_1-T_2} ω=T1T2T2

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值