太长不看版
绝热过程方程
①
p
d
V
γ
=
c
pdV^γ = c
pdVγ=c
②
V
γ
−
1
T
=
c
2
V^{γ-1}T = c_2
Vγ−1T=c2
③
p
γ
−
1
T
−
γ
=
c
3
p^{γ-1}T^{-γ} = c_3
pγ−1T−γ=c3
绝热过程做功
W
=
−
Δ
E
=
−
i
2
v
R
d
T
=
p
d
V
W = -\Delta E = -\frac {i}{2}vRdT = pdV
W=−ΔE=−2ivRdT=pdV
热机效率
η
=
W
Q
1
=
1
−
Q
2
Q
1
η = \frac W{Q_1} = 1 - \frac{Q_2}{Q_1}
η=Q1W=1−Q1Q2
卡诺正循环效率
η
=
1
−
T
2
T
1
η = 1 - \frac{T_2}{T_1}
η=1−T1T2
制冷系数
ω
=
Q
2
W
=
Q
2
Q
1
+
Q
2
\omega = \frac{Q_2}{W} = \frac{Q_2}{Q_1+Q_2}
ω=WQ2=Q1+Q2Q2
卡诺制冷机制冷系数
ω
=
T
2
T
1
−
T
2
\omega = \frac{T_2}{T_1-T_2}
ω=T1−T2T2
绝热过程
绝热过程
系统与外界无热量交换的过程称为绝热过程,
特征: d Q = d E + p d V = 0 dQ = dE + pdV = 0 dQ=dE+pdV=0 d W = − d E = p d V dW = -dE = pdV dW=−dE=pdV
绝热过程靠减少内能来对外做功。
故由 Δ E = i 2 v R ( T 2 − T 1 ) \Delta E = \frac{i}2vR(T_2-T_1) ΔE=2ivR(T2−T1) 得 W = − Δ E = − i 2 v R d T = p d V W = -\Delta E = -\frac {i}{2}vRdT = pdV W=−ΔE=−2ivRdT=pdV
气体对外做功,内能减少,温度下降,压强减小,该过程 p 、 V 、 T p、V、T p、V、T同时变化。
绝热过程摩尔热容: C Q = ( d Q d T ) Q = 0 C_Q =(\frac{dQ}{dT})_Q=0 CQ=(dTdQ)Q=0
绝热过程方程推导:
W = − Δ E = − i 2 v R d T = p d V W = -\Delta E = -\frac {i}{2}vRdT = pdV W=−ΔE=−2ivRdT=pdV ⋯ \cdots ⋯ ⋯ \cdots ⋯ ①
状态方程: p V = v R T pV=vRT pV=vRT
两边微分得: p d V + V d p = v R d T pdV+Vdp=vRdT pdV+Vdp=vRdT ⋯ \cdots ⋯ ⋯ \cdots ⋯ ②
①、②消去 d T dT dT得: p d V + V d p p d V = − R C V \frac{pdV+Vdp}{pdV}=-\frac{R}{C_V} pdVpdV+Vdp=−CVR
⇒ \Rightarrow ⇒ p d V + V d p = − R C V p d V pdV+Vdp=-\frac{R}{C_V}pdV pdV+Vdp=−CVRpdV
⇒ \Rightarrow ⇒ V d p = − ( 1 + R C V ) d V = − C p C V p d V = − γ p d V Vdp=-(1+\frac{R}{C_V})dV=-\frac{C_p}{C_V}pdV=-γpdV Vdp=−(1+CVR)dV=−CVCppdV=−γpdV
故 V d p = − γ p d V Vdp=-γpdV Vdp=−γpdV ⇒ \Rightarrow ⇒ d p p + γ d V V = 0 \frac{dp}{p}+γ\frac{dV}{V}=0 pdp+γVdV=0
两边积分得: l n p + γ l n V = c lnp+γlnV=c lnp+γlnV=c ⇒ \Rightarrow ⇒ p d V γ = c pdV^γ = c pdVγ=c ⋯ \cdots ⋯ ⋯ \cdots ⋯ ③
由③和状态方程消去 p p p得 V γ − 1 T = c 2 V^{γ-1}T=c_2 Vγ−1T=c2 ⋯ \cdots ⋯ ⋯ \cdots ⋯ ④(该式是对于某一确定种类和量的气体,故 v v v可看作常量)
由③和状态方程消去 V V V得 p γ − 1 T − γ = c 3 p^{γ-1}T^{-γ}=c_3 pγ−1T−γ=c3 ⋯ \cdots ⋯ ⋯ \cdots ⋯ ⑤
③、④、⑤称为绝热过程方程。( γ = C p C V γ=\frac{C_p}{C_V} γ=CVCp > 1 \gt1 >1)
绝热线
绝热线:
由 p V γ = c pV^γ=c pVγ=c 两边微分 ⇒ \Rightarrow ⇒ V γ d p + γ p V γ − 1 d V = 0 V^γdp+γpV^{γ-1}dV=0 Vγdp+γpVγ−1dV=0 ⇒ \Rightarrow ⇒ V d p + γ p d V = 0 Vdp+γpdV=0 Vdp+γpdV=0
故 d p d V \frac{dp}{dV} dVdp ∣ A = − γ P A V A |_A=-γ\frac{P_A}{V_A} ∣A=−γVAPA
等温线
由 p V = c pV=c pV=c 两边微分 ⇒ \Rightarrow ⇒ p d V + C d p = 0 pdV+Cdp=0 pdV+Cdp=0 ⇒ \Rightarrow ⇒ d p d V \frac{dp}{dV} dVdp ∣ A = − P A V A |_A=-\frac{P_A}{V_A} ∣A=−VAPA
由于 γ > 1 γ\gt1 γ>1 故绝热线比等温线陡。
注:绝热线与等温线只有一个交点。
气体向真空绝热自由膨胀过程中,由于绝热, d Q = 0 dQ=0 dQ=0,由因气体向真空自由膨胀,故 d W = 0 dW=0 dW=0。由此可得 d E = 0 dE=0 dE=0。即理想气体向真空自由膨胀后内能不变,即温度不变。且 p 1 V 1 = p 2 V 2 p_1V_1=p_2V_2 p1V1=p2V2。
卡诺循环
循环过程:系统经过一系列状态变化后又回到初始状态的整个过程叫循环过程。
循环过程的物质系统统称为工作物质(工质)。
循环中由于内能为状态量,故变化始末 Δ E = 0 \Delta E =0 ΔE=0。
正循环
正循环过程 W > 0 W\gt0 W>0 。
净功 W W W 为 p − V p-V p−V 图中的循环面积,且由于 Δ E = 0 \Delta E=0 ΔE=0,故净热 Δ Q = W \Delta Q=W ΔQ=W。

热机效率
η = W Q 1 = 1 − Q 2 Q 1 η = \frac W{Q_1} = 1 - \frac{Q_2}{Q_1} η=Q1W=1−Q1Q2( Q 1 、 Q 2 Q_1、Q_2 Q1、Q2分别为 A a B AaB AaB 和 B b A BbA BbA 过程的净热)
由于 Q 2 ≠ Q 1 ≠ 0 Q_2\ne Q_1\ne 0 Q2=Q1=0 故 η < 1 η\lt 1 η<1 。
卡诺循环
卡诺循环由两个绝热过程和两个等温过程构成。工作物质只与两个恒定热源(一个高温一个低温)交换热量。

A 、 B A、B A、B 过程,等温膨胀吸热,
Q 1 = m M R T 1 l n V 2 V 1 Q_1=\frac{m}{M}RT_1ln\frac{V_2}{V_1} Q1=MmRT1lnV1V2
C 、 D C、D C、D 过程,等温压缩放热,
Q 2 = m M R T 2 l n V 3 V 4 Q_2=\frac{m}{M}RT_2ln\frac{V_3}{V_4} Q2=MmRT2lnV4V3
B C 、 D A BC、DA BC、DA 过程绝热, Q = 0 Q=0 Q=0 。
故循环效率 η = W Q 1 = 1 − Q 2 Q 1 = 1 − T 2 l n V 3 V 4 T 1 l n V 2 V 1 η=\frac{W}{Q_1}=1-\frac{Q_2}{Q_1}=1-\frac{T_2ln\frac{V_3}{V_4}}{T_1ln\frac{V_2}{V_1}} η=Q1W=1−Q1Q2=1−T1lnV1V2T2lnV4V3
绝热过程中:
B
→
C
B\rightarrow C
B→C:
T
1
V
2
γ
−
1
=
T
2
V
3
γ
−
1
T_1{V_2}^{γ-1}=T_2{V_3}^{γ-1}
T1V2γ−1=T2V3γ−1
D
→
A
D\rightarrow A
D→A:
T
1
V
1
γ
−
1
=
T
2
V
4
γ
−
1
T_1{V_1}^{γ-1}=T_2{V_4}^{γ-1}
T1V1γ−1=T2V4γ−1
故 V 2 V 1 = V 3 V 4 \frac{V_2}{V_1}=\frac{V_3}{V_4} V1V2=V4V3
可得 η = W Q 1 = 1 − Q 2 Q 1 = 1 − T 2 T 1 η =\frac{W}{Q_1}=1-\frac{Q_2}{Q_1}= 1 - \frac{T_2}{T_1} η=Q1W=1−Q1Q2=1−T1T2
所以卡诺正循环效率为: η = 1 − T 2 T 1 η = 1 - \frac{T_2}{T_1} η=1−T1T2
制冷剂采用的是逆循环。
制冷剂功效用制冷系数 ω = Q 2 W = Q 2 Q 1 + Q 2 \omega = \frac{Q_2}{W} = \frac{Q_2}{Q_1+Q_2} ω=WQ2=Q1+Q2Q2 来衡量,
对于卡诺制冷机: ω = T 2 T 1 − T 2 \omega = \frac{T_2}{T_1-T_2} ω=T1−T2T2 。