级数_2:常数项级数的审敛法

正项级数

定义:若 u n ≥ 0 u_n\ge0 un0,则称 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 为正项级数。


定理1:正项级数收敛 ⇒ \Rightarrow 部分和序列有界(基础,不常用)


定理2(比较审敛法):

∑ n = 1 ∞ u n , ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}u_n,\sum_{n=1}^{\infty}v_n n=1unn=1vn 是两个正项级数,且存在 N ∈ N + N\in N_+ NN+,对一切 n > N n\gt N n>N,有 u n ≤ v n u_n\le v_n unvn,则:

  1. 若强级数 ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn 收敛,则弱级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 也收敛。

  2. 若弱级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 发散,则强级数 ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn 也发散。

例 : 例: ∑ n = 1 ∞ 1 n p \sum_{n=1}^{\infty}\frac{1}{n^p} n=1np1

         1)若 p ≤ 1 p\le1 p1,可得 1 n p ≥ 1 n \frac{1}{n^p}\ge\frac{1}{n} np1n1,而 ∑ n = 1 ∞ 1 n \sum_{n=1}^{\infty}\frac{1}{n} n=1n1 发散,故 ∑ n = 1 ∞ 1 n p \sum_{n=1}^{\infty}\frac{1}{n^p} n=1np1 发散。

         2)若 p > 1 p\gt 1 p>1时, ∑ n = 1 ∞ 1 n p \sum_{n=1}^{\infty}\frac{1}{n^p} n=1np1收敛。

思路:级数 ∑ n = 1 ∞ 1 n p \sum_{n=1}^{\infty}\frac{1}{n^p} n=1np1 的和等于曲线 1 x p \frac{1}{x^p} xp1 1 1 1为单位的右矩形面积之和,该和小于曲线 1 x p \frac{1}{x^p} xp1 的积分,且该积分趋于某个定值,由比较审敛法可得级数收敛。

1 n p \frac{1}{n^p} np1 的收敛性结论需记忆。


定理3(比较审敛法的极限形式):

∑ n = 1 ∞ u n , ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}u_n,\sum_{n=1}^{\infty}v_n n=1unn=1vn 是两个正项级数,满足 lim ⁡ x → ∞ u n v n = l \lim\limits_{x\rightarrow\infty}\frac{u_n}{v_n}=l xlimvnun=l,则有:

  1. 0 < l < ∞ 0\lt l\lt \infty 0<l<,两级数同时发散或收敛。

  2. l = 0 l=0 l=0,若 v n v_n vn 收敛,则 u n u_n un 收敛。

  3. l = ∞ l=\infty l=,若 v n v_n vn 发散,则 u n u_n un 发散。

注:在该定理应用时,可灵活运用等价无穷小和放缩等方法。

例 : ∑ n = 1 ∞ l n ( 1 + 1 n 2 ) 例:\sum_{n=1}^{\infty}ln(1+\frac{1}{n^2}) n=1ln(1+n21)

          lim ⁡ x → ∞ l n ( 1 + 1 n 2 ) 1 n 2 = 1 > 0 \lim\limits_{x\rightarrow\infty}\frac{ln(1+\frac{1}{n^2})}{\frac{1}{n^2}}=1\gt 0 xlimn21ln(1+n21)=1>0

         由 ∑ n = 1 ∞ 1 n 2 \sum_{n=1}^{\infty}\frac{1}{n^2} n=1n21收敛,得级数收敛。


定理4(比值审敛法):

∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 为正项级数,且 lim ⁡ x → ∞ u n + 1 u n = ρ \lim\limits_{x\rightarrow\infty}\frac{u_{n+1}}{u_n}=\rho xlimunun+1=ρ,则

  1. ρ < 1 \rho\lt 1 ρ<1 时,级数收敛。

  2. ρ > 1 \rho\gt 1 ρ>1 ρ = ∞ \rho=\infty ρ= 时,级数发散。

  3. ρ = 1 \rho=1 ρ=1时,级数可能收敛也可能发散。

例 : ∑ n = 1 ∞ n x n − 1 ( x > 0 ) 例:\sum_{n=1}^{\infty}nx^{n-1}(x\gt 0) n=1nxn1(x>0)

          lim ⁡ x → ∞ ( n + 1 ) x n n x n − 1 = x \lim\limits_{x\rightarrow\infty}\frac{(n+1)x^n}{nx^{n-1}}=x xlimnxn1(n+1)xn=x

         当 0 < x < 1 0\lt x\lt1 0<x<1 时,级数收敛。

         当 x > 1 x\gt1 x>1时,级数发散。

         当 x = 1 x=1 x=1时,级数为 ∑ n = 1 ∞ n \sum_{n=1}^{\infty}n n=1n,发散。


定理5(根值审敛法):

若级数为正项级数, lim ⁡ x → ∞ u n n = ρ \lim\limits_{x\rightarrow\infty}\sqrt[n]{u_n}=\rho xlimnun =ρ,则:

  1. ρ < 1 \rho\lt1 ρ<1 时,级数收敛。

  2. ρ > 1 \rho\gt1 ρ>1 时,级数发散。

  3. ρ = 1 \rho=1 ρ=1 时,级数可能收敛也可能发散。

例 : ∑ n = 1 ∞ 1 n n 例:\sum_{n=1}^{\infty}\frac{1}{n^n} n=1nn1

          lim ⁡ x → ∞ 1 n n n = lim ⁡ x → ∞ 1 n = 0 \lim\limits_{x\rightarrow\infty}\sqrt[n]{\frac{1}{n^n}}=\lim\limits_{x\rightarrow\infty}\frac{1}{n}=0 xlimnnn1 =xlimn1=0

         级数收敛。


交错级数

定义:设 u n > 0 ( n = 1 , 2 , ⋯   ) u_n\gt0(n=1,2,\cdots) un>0(n=1,2,),则各项符号正负相间的级数 u 1 − u 2 + u 3 − ⋯ + ( − 1 ) n − 1 u n + ⋯ u_1-u_2+u_3-\cdots+(-1)^{n-1}u_n+\cdots u1u2+u3+(1)n1un+ 称为交错级数。


定理6(莱布尼茨判别法):

若交错级数满足:

  1. u n ≥ u n + 1 u_n\ge u_{n+1} unun+1

  2. lim ⁡ x → ∞ u n = 0 \lim\limits_{x\rightarrow\infty}u_n=0 xlimun=0

则级数收敛,且其和 S ≤ u 1 S\le u_1 Su1,余项满足 ∣ r n ∣ ≤ u n + 1 。 |r_n|\le u_{n+1}。 rnun+1

例 : ∑ n = 1 ∞ ( − 1 ) n − 1 n 1 0 n 例:\sum_{n=1}^{\infty}(-1)^{n-1}\frac{n}{10^n} n=1(1)n110nn

          u n = n 1 0 n u_n=\frac{n}{10^n} un=10nn

         u n + 1 n n = 1 10 ⋅ n + 1 n < 1 \frac{u_{n+1}}{n_n}=\frac{1}{10}\cdot\frac{n+1}{n}\lt1 nnun+1=101nn+1<1

         lim ⁡ x → ∞ u n = 0 \lim\limits_{x\rightarrow\infty}u_n=0 xlimun=0

        故收敛。


绝对收敛与条件收敛

定义:对任意项级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un,若 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty}|u_n| n=1un收敛,则称原级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un绝对收敛。

若原级数收敛收敛,但取绝对值以后的级数发散,则称原级数条件收敛。

例 如 : 例如: ∑ n = 1 ∞ ( − 1 ) n − 1 1 n \sum_{n=1}^{\infty}(-1)^{n-1}\frac{1}{n} n=1(1)n1n1 为条件收敛。

               ∑ n = 1 ∞ ( − 1 ) n − 1 1 ( n − 1 ) ! \sum_{n=1}^{\infty}(-1)^{n-1}\frac{1}{(n-1)!} n=1(1)n1(n1)!1 为绝对收敛。


定理7:绝对收敛的级数一定收敛。

例 例 :证明 ∑ n = 1 ∞ s i n n α n 4 \sum_{n=1}^{\infty}\frac{sinnα}{n^4} n=1n4sinnα 绝对收敛

         ∣ s i n n α n 4 ∣ ≤ 1 n 4 |\frac{sinnα}{n^4}|\le\frac{1}{n^4} n4sinnαn41,而 ∑ n = 1 ∞ 1 n 4 \sum_{n=1}^{\infty}\frac{1}{n^4} n=1n41收敛

        故 u m n = 1 ∞ ∣ s i n n α n 4 ∣ um_{n=1}^{\infty}|\frac{sinnα}{n^4}| umn=1n4sinnα 收敛

        所以 ∑ n = 1 ∞ s i n n α n 4 \sum_{n=1}^{\infty}\frac{sinnα}{n^4} n=1n4sinnα 绝对收敛


*绝对收敛级数的性质

定理8:绝对收敛级数不因改变项的位置而改变其和。

定理9(绝对收敛级数的乘法):设级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn 都绝对收敛,其和为 S 和 σ S和\sigma Sσ,则对所有乘积 u i v j u_iv_j uivj 按任意顺序排列得到的级数 ∑ n = 1 ∞ w n \sum_{n=1}^{\infty}w_n n=1wn 也绝对收敛,其和为 S σ S\sigma Sσ

注:绝对收敛级数具有与条件收敛级数完全不同的性质

       绝对收敛级数有类似有限项和的性质,但条件收敛级数不具有这两条性质。


补充

一般来说,如果级数 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty}|u_n| n=1un 发散,我们不能断定级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 也发散。但是,如果我们用比值审敛法或根值审敛法根据 lim ⁡ x → ∞ ∣ u n + 1 u n ∣ = ρ > 1 \lim\limits_{x\rightarrow\infty}|\frac{u_{n+1}}{u_n}|=\rho\gt1 xlimunun+1=ρ>1 判定级数 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty}|u_n| n=1un 发散,那么我们可以断定级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 必定发散,这是因为从 ρ > 1 \rho\gt1 ρ>1 可推知 ∣ u n ∣ ↛ 0 ( n → ∞ ) |u_n|\not\rightarrow0(n\rightarrow\infty) un0(n),因此级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un 是发散的。

例 : ∑ n = 1 ∞ ( − 1 ) n 1 2 n ( 1 + 1 n ) n 2 例:\sum_{n=1}^{\infty}(-1)^n\frac{1}{2^n}(1+\frac{1}{n})^{n^2} n=1(1)n2n1(1+n1)n2

         记 u n = 1 2 n ( 1 + 1 n ) n 2 u_n=\frac{1}{2^n}(1+\frac{1}{n})^{n^2} un=2n1(1+n1)n2

         得 u n n = 1 2 ( 1 + 1 n ) n → 1 2 e ( n → ∞ ) \sqrt[n]{u_n}=\frac{1}{2}(1+\frac{1}{n})^{n}\rightarrow\frac{1}{2}e(n\rightarrow\infty) nun =21(1+n1)n21e(n)

          1 2 e > 1 \frac{1}{2}e\gt1 21e>1

         故 u n ↛ 0 ( n → ∞ ) _n\not\rightarrow0(n\rightarrow\infty) n0(n)

         所以级数发散

  • 7
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值