货币套汇(图路径)-- 数据结构 (深搜+Floyd算法)

博客围绕套汇问题展开,给定货币兑换率,需确定是否存在套汇可能。先提出用深度搜索(DFS)构造图,将边权值相乘判断是否为正环来求解。但该方法在点多的情况下非最佳。最后尝试用Floyd算法,通过判断对角线是否大于1来确定套汇是否成功。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深搜+Floyd算法

题目描述

套汇是指利用货币汇兑率的差异将一个单位的某种货币转换为大于一个单位的同种货币。
例如,假定1 美元可以买0.7 英镑,1 英镑可以买9.5法郎,1法郎可以买到0.16美元。通过货币兑换,一个商人可以从1美元开始买入,得到0.7×9.5×0.16=1.064美元,从而获得6.4%的利润。 给定n种货币c1 ,c2 ,… ,cn的有关兑换率,试设计一个有效算法,确定货币间是否存在套汇的可能性。


提示:判断图上是否出现正环,即环上所有的边相乘大于1

输入

第一行:测试数据组数

每组测试数据格式为:

第一行:正整数n (1< =n< =30),正整数m,分别表示n种货币和m种不同的货币兑换率。

2~n+1行,n种货币的名称。

n+2~n+m+1行,每行有3 个数据项ci,rij 和cj ,表示货币ci 和cj的兑换率为 rij。

输出

对每组测试数据,如果存在套汇的可能则输出YES

如果不存在套汇的可能,则输出NO。

样例输入

2
3 3
USDollar
BritishPound
FrenchFranc
USDollar 0.5 BritishPound
BritishPound 10.0 FrenchFranc
FrenchFranc 0.21 USDollar
3 6
USDollar
BritishPound
FrenchFranc
USDollar 0.5 BritishPound
USDollar 4.9 FrenchFranc
BritishPound 10.0 FrenchFranc
BritishPound 1.99 USDollar
FrenchFranc 0.09 BritishPound
FrenchFranc 0.19 USDollar

样例输出

YES
NO

思路

这整一道题下来,首先最先的思路就是希望构造一个图,然后通过深度搜索DFS,将每一条边的权值都乘起来,最后再乘回终点与起点的权值,若大于1,则说明是一个正环,并且套汇成功,直接输出YES。

深搜

题解

#include <iostream>
#include<string>
using namespace std;

class Graph
{
	int vexnum;//顶点数
	int arcnum;//输入的边数
	bool *visit;//访问数组
	double **array;//邻接矩阵
	string *vex;//边
	int *road;//记录走过的路
	int num;
	void DFS(int v);
	int Index(string s)
	{
		for (int i = 0; i < vexnum; i++)
			if (vex[i] == s) return i;
		return -1;
	}
public:
	Graph();
	~Graph();
	void DFS_Traverse();
};

Graph::Graph()
{
	cin >> vexnum >> arcnum;
	vex = new string[vexnum];
	visit = new bool[vexnum];
	road = new int[vexnum];
	array = new double*[vexnum];
	for (int i = 0; i < vexnum; i++)
	{
		cin >> vex[i];
		array[i] = new double[vexnum];
		visit[i] = false;
		road[i] = 0;
		for (int j = 0; j < vexnum; j++)
			array[i][j] = 0;
	}
	for (int i = 0; i < arcnum; i++)
	{
		string str1, str2;
		double weight;
		cin >> str1 >> weight >> str2;
		int pos1 = Index(str1), pos2 = Index(str2);
		array[pos1][pos2] = weight;
	}
}

Graph::~Graph()
{
	delete[]vex;
	delete[]road;
	delete[]visit;
	for (int i = 0; i < vexnum; i++)
		delete array[i];
	delete array;
}

void Graph::DFS(int v)
{
	visit[v] = true;
	road[num++] = v;//记录每一条经过的边,以便后面的计算
	for (int i = 0; i < vexnum; i++)
	{
		if (visit[i] == 0 && array[v][i] != 0)//若无访问且有边相接,继续遍历
			DFS(i);
	}
}


void Graph::DFS_Traverse()
{
	for (int i = 0; i < vexnum; i++)//对每一个节点都进行一次遍历
	{
		num = 0;//定义为0
		DFS(i);
		for (int k = 1; k < num; k++)
		{
			if (array[road[k]][i] != 0) {//判断与起点是否构成环,若构成环则进行计算操作
				float result = 1;
				for (int j = 0; j < k; j++)
					result *= array[road[j]][road[j + 1]];//一直乘到最后一个点
				result *= array[road[k]][road[0]];//最后从最后一个点回到起点,构成一个环,将其乘起来
				//cout << result << endl;
				if (result > 1) {//套汇成功,存在正环
					cout << "YES\n";
					return;
				}
			}

		}
		for (int i = 0; i < vexnum; i++)//对visit数组重新初始化
		{
			visit[i] = false;
			road[i] = 0;
		}
	}
	cout << "NO\n";//没找到正环
}

int main()
{
	int t;
	cin >> t;
	while (t--)
	{
		Graph graph;
		graph.DFS_Traverse();
	}
	return 0;
}

Floyd算法

优化

后来这道题仔细想了想,最后发现,这种深度搜索的方法固然可以得出答案,但是若是点很多,遍历的顺序无法确定。举个例子,假设只存在一个正环,若遍历的点很多,可能要耗费很长的时间,最后遍历到那个环,最后输出yes,最后同样能得出正确答案,但是并不是最佳解法。

最后我想尝试用Floyd算法去解这道题试试看
如果用Floyd算法,这道题就变得简单起来,只要判断最后的对角线是否大于1,如果大于1就可以得到套汇成功

#include<iostream>
#include<string>
#include<map>
using namespace std;
#define MAX 30
double path[MAX][MAX];
map<string, int>ratemap;

bool Floyd(int n)
{
	for (int k = 0; k < n; k++)
		for (int i = 0; i < n; i++)
			for (int j = 0; j < n; j++)
				if (path[i][j] < path[i][k] * path[k][j])
					path[i][j] = path[i][k] * path[k][j];
	for (int i = 0; i < n; i++)
		if (path[i][i] > 1)
			return true;
	return false;
}


int main()
{
	int t;
	cin >> t;
	while (t--)
	{
		memset(path, 0, sizeof(path));
		int n, m;
		double rate;
		cin >> n >> m;
		string edge1, edge2, edge;
		for (int i = 0; i < n; i++)
		{
			cin >> edge;
			pair<string, int>a(edge, i);
			ratemap.insert(a);
			path[i][i] = 1;
		}
		for (int i = 0; i < m; i++)
		{
			cin >> edge1 >> rate >> edge2;
			path[ratemap[edge1]][ratemap[edge2]] = rate;
		}
		if (Floyd(n)) cout << "YES\n";
		else cout << "NO\n";
		ratemap.clear();
	}
	return 0;
}

Stable Diffusion是一款基于深度学习的文本到像模型,能够根据输入的文字提示生成相应的图片。为了帮助您了解如何使用Stable Diffusion批量生成图片的过程,下面将为您详细介绍。 ### 环境准备 首先你需要准备好适合运行Stable Diffusion的工作环境: 1. **硬件设备**:建议配备一块NVIDIA GPU,显存越大越好;如果没有GPU也可以只依靠CPU工作,不过效率会非常低。 2. **安装Python环境**:通常选择Anaconda来管理虚拟环境可以简化依赖包之间的冲突问题。 3. **获取Stable Diffusion WebUI项目源码**: - 可以从GitHub上克隆官方仓库`https://github.com/AUTOMATIC1111/stable-diffusion-webui.git` 4. 安装必要的依赖库并启动Web UI界面: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git cd stable-diffusion-webui conda env create -f environment.yaml # 或者使用 pip install 脚本里的命令去创建pip环境 ``` 5. 根据系统情况调整配置文件中的设置(例如CUDA版本等) ### 批量生成功能实现步骤 接下来就是具体的批处理流程了: 1. 进入StableDiffusion web ui页面后,在左侧找到“Batch Generate”选项卡; 2. 设置好每次迭代的数量、随机种子值范围以及总的迭代次数等等参数; 3. 输入想要转换成画内容描述语句作为Prompt,并设定Negative Prompt避免某些特征出现在最终结果里; 4. 修改其他如风格倾向(Style)、CFG Scale、采样步数(Sampling Steps)等相关超参直至满意为止; 5. 开始点击"Generate"按钮就可以让程序自动为你生成一系列高质量的艺术作品啦! 需要注意的是由于这是一个比较消耗资源的任务,所以在长时间稳定输出之前最好先做一些小规模测试熟悉整个过程并且观察效果是否达到预期标准。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风信子的猫Redamancy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值