「弱不禁风」的图神经网络

本文探讨了图神经网络(GNN)的第二个局限性,即容易受到噪音和对抗攻击的影响,导致预测结果不准确。GNN在面对结构微小改动时可能产生大幅预测偏差。攻击包括改变节点特征和邻接矩阵,尽管实际攻击常见,但直接优化攻击过程具有挑战性,因为操作离散且每次攻击都需要重新训练模型。为解决这一问题,提出了贪婪搜索和简化训练过程的方法。实验表明,GNN对攻击极为敏感,微小攻击即可显著改变预测结果。文章最后提及了增强GNN鲁棒性的研究方向。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上一节讲到GNN的第一个局限是无法有效的区分某些图结构结构.

CS224W 18.1-Limitations of Graph Neural Network 

本节就延续来讲GNN的第二个局限性

CS224W 18.2-Limitations of Graph Neural Network

GNN的第二个局限就是容易受到噪音的影响和对抗攻击,不够鲁棒.

在受到噪音/攻击的时候, GNN的预测结果很容易产生偏差.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值