ICML'20 通过图稀疏化来提升GNN的鲁棒性

论文提出NeuralSparse,一种有监督的图稀疏化方法,通过去除与任务无关的边增强图神经网络(GNN)的泛化能力。该方法在保持下游任务预测准确性的同时优化图结构,适用于复杂图数据的处理。
摘要由CSDN通过智能技术生成

fig0
  • 论文标题:Robust Graph Representation Learning via Neural Sparsification

  • 作者:Cheng Zheng; Bo Zong; Wei Cheng; Dongjin Song; Jingchao Ni; Wenchao Yu; Haifeng Chen; Wei Wang

  • 论文地址:https://songdj.github.io/publication/icml-20/icml-20.pdf

  • 欢迎关注小编知乎:戴鸽

在真实场景下,图经常含有复杂的邻居信息,特征和邻居个数都很多。尽管图网络通过邻居聚合来高效的捕获图结构,但仍然一些任务无关的节点被加入,使得模型处于次优状态。因此,作者提出了NeuralSparse的方法。这是一种有监督的图稀疏技术,通过去除图中多余与任务无关边,提高模型泛化能力。

1. Introduction

两个节点的连接信息可能与目标下游任务无关(比如偶发的噪音连接,用户偶尔点击一个其并不喜欢的商品)。因此,直接聚合图上原始邻居可能引入了任务无关的信息,进而影响图模型本身的性能(ps:感觉这个可能映照了GCN-LPA,单纯的标签扩散可能都可以带来比较好的结果)。

如下图所示,假设有红蓝两类标签,按照特征来看可以用高斯分布变成两块独立分布。图(a)中展示了直接特征基本找不到明显分界,图(b)中的节点两两相连,随机采周围10个点当做邻居。此时,这种随机采的边信息就和标签信息没有什么太大关系。这时训练一个2层GCN后,可以观察到节点的分布差异更不明显了。而作者的希望的是得到比图(c) DropEdge更好的结果,使得相同标签的节点能够被边链接在一起,进而使得分类边界更明显。

fig1

在以往工作中,有一部分采用无监督方式来进行稀疏图学习,但是其可能无法在下游任务达到最优。另外一部分工作预定义下采样分布,这种方法可能无法适应后续任务,也就是还是和任务本身衔接不够紧密。另外仍然有监督学习的方法,但这些方法运算相对困难。

因此,作者提出的NeuralSparse模型是一种能够从下游任务获得反馈,进而抽取与任务强相关边的方法。NeuralSparse主要由2部分组成:稀疏网络和GNN。其中,稀疏网络采用了参数化的稀疏过程。在固定当前边的情况下去找下一个边。在训练过程中,网络由下游任务决定稀疏化策略。在测试过程中,数据通过稀疏化网络后再进行预测。对于GCN模块,输入是稀疏化后的图,并且切合其下游任务给出特征。在NeuralSparse这样的框架下,作者可以同时优化图结构并且获得稀疏解。最后希望如图(d)一样,其稀疏化过程比随机的边去除更加有效。

2. Method

2.1. 方法总概

从整体上来看,这套框架的loss服务于两个网络,一个对应于找子网络的Sparsification Network,一个对应于通过稀疏化以后,与下游任务紧密相连的GNN分类网络。

fig2

一个带节点特征的图定义为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值