Using Hybrid Physics-Informed Neural Networks for Digital Twins in Prognosis and Health Management

Using Hybrid Physics-Informed Neural Networks for Digital Twins in Prognosis and Health Management

Motivation

  • Simulations are pervasive in every domain of science and engineering, but they often have constraints such as large computational times, limited compute resources, tedious manual setup efforts, and the need for technical expertise. Neural networks not only accelerate simulations done by traditional solvers, but also simplify simulation setup and solve problems not addressable by traditional solvers.
  • NVIDIA Modulus is a physics-informed neural network (PINN) toolkit for engineers, scientists, students, and researchers who are getting started with AI-driven physics simulations. You may also be looking to leverage a powerful, existing framework to implement your domain knowledge and solve complex nonlinear physics problems with real-world applications.
  • A success story of a Modulus application today is in the use of hybrid PINNs for digital twins in prognosis and health management.

Case

Aircraft use case study

Motivation

  • Maintenance of engineering assets and industrial equipment (such as aircraft, jet engines, wind turbines, and so on) is critical for safety as well as enhanced profitability in the services and warranties of these assets. Effective preventive maintenance requires the knowledge of the various operating parameters and their impact on the wear and tear of equipment. Simulations, advanced analytics, and deep learning algorithms enable the predictive modeling of complex systems and their operating environment.
  • In this research project, Prof. Viana and his team of researchers built predictive models for fatigue crack growth prognosis on aircraft window panels (Figure 1), where models were trained using historical flight records (origin and destination airports, cruise altitude, and so on) and limited inspection observations (such as the crack length data for only a portion of the fleet, and so on

在这里插入图片描述
challenges

  • There are two main challenges.
    • First, the data is highly unbalanced. For the aircraft fleet that was being analyzed, there were only 182,500 input points and only 25 output points. Building purely machine learning models under such circumstance is extremely hard.
    • Second, while the conventional physics-based models maybe accurate, they often entail engineering assumptions regarding loading conditions. Considering that the sample size for this problem includes a fleet of 500 aircraft, these simulations must be done a few million times.

Main work
在这里插入图片描述

  • Full-fledged finite element analysis configured for crack growth simulation is extremely expensive. Therefore, it is simply not feasible for digital twin applications. This is true even if we were to run simulations for hundreds of aircraft many times over, as we optimized inspections and decided how to swap routes for a few aircraft. A parameterized physics-driven AI model is constructed in Modulus that satisfies the governing laws of linear elasticity, as follows:
    σ j i , j + f i = 0 , σ i j = λ ϵ k k δ i j + 2 μ ϵ i j , ϵ i j = 1 2 ( u i , j + u j , i ) \sigma_{j i, j}+f_{i}=0 ,\sigma_{i j}=\lambda \epsilon_{k k} \delta_{i j}+2 \mu \epsilon_{i j}, \epsilon_{i j}=\frac{1}{2}\left(u_{i, j}+u_{j, i}\right) σji,j+fi=0,σij=λϵkkδij+2μϵij,ϵij=21(ui,j+uj,i)
    其中, σ i j \sigma_{i j} σijis the Cauchy stress tensor, δ i j \delta_{i j} δijis the Kronecker delta function and ϵ i j \epsilon_{i j} ϵij is the strain tensor.

Method

  • The inputs to this parameterized model are the loading condition (the hoop stresses) and the spatial coordinates of batches of a point cloud within the computational domain. The outputs are the stresses and displacements. The network architecture consists of a Fourier feature encoding layer followed by several fully connected layers.
  • Several techniques are used to enhance the accuracy and convergence speed of the model, such as network weight normalization, signed distance loss weighting, differential equation normalization and nondimensionalization, and XLA kernel fusion

Result
在这里插入图片描述


来源:
https://developer.nvidia.com/blog/using-hybrid-physics-informed-neural-networks-for-digital-twins-in-prognosis-and-health-management/

  • 9
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pinn山里娃

原创不易请多多支持

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值