简介

支持向量机原理和目标
①各类概念
(1)线性可分支持向量机(硬间隔最大化、硬间隔支持向量机)
点到分类线的距离相等—不可能有样本落在分割面上
(2)线性支持向量机(软间隔最大化、软间隔支持向量机)
点到分类线的距离不一定相等,有一定的范围
(3)非线性支持向量机—加入核函数

支撑向量:边界上的几个向量,其他向量并不影响分类
点到直线的问题在n维情况下都可以求,就是带入直线方程,然后除以w的二范式

如果是正值,则在分界线上方(法向正方向)W就是法向量
SVM:离样本的最近距离取最大


目标函数


–要满足约束条件求目标函数就ok了(使用拉格朗日乘数法)–不等式约束条件

目标函数等价转换

(在线性条件下对偶问题是相等的)

对两个变量求导
只需要求解出α就能求出W和b —采用SMO算法求解

例

会带求出W,b

注:但并非将所有样本都分类正确就是一定好的,因为有的样本本身就是线性不可分的
线性支持向量机: 不一定分类完全正确的超平面





界限内均具有支撑模型能力,只不过具有一定的损失值(惩罚因子)
损失函数:L2正则

Hinge损失–max(1-x)
3万+

被折叠的 条评论
为什么被折叠?



