风险策略的分析方法跟大多数的数据分析场景相似,都是一种数据下探直到找到问题原因的过程,有些像剥洋葱一样直到探索到问题的真像,我们称这种方法为剥洋葱法。
为什么在整个策略分析中,我们一开始并不能了解到问题的真像(比如找到那个“心”)。因为这个是由风控的整体决策流程决定的,了解风控的业务可以看看整体的风控流程,大致由以下几个部分组成:
①事件
②策略集
③规则
也可以参考之前的文章:风控策略篇—风险事件&策略集&规则
一:这里我们先介绍,什么是事件:
常见的事件是被包含在不同的场景中,API调用需要对应到不同的场景,例如:注册,修改,登录,贷款,提现等都是我们具体的场景,而事件又包括哪些类型,以下列出来的明细,几乎包括了常见的类型:
事件类型(eventType)
二.策略集
以上的一个或多个的事件都会发生在我们整个贷款流程的节点里,而每个节点都会触发一下的风险类型,比如在我们开篇的图里,该事件就出了两个风险类型,分别是:creditRisk(失信风险)与garbageRegister(垃圾注册)。以下,我们再列清楚具体的归类的一些风险类型:
风险类型(riskType)
由一个或多个风险类型就对应了不同的策略,而多个策略就组成了风险策略集。
三.规则
拆解具体的策略集,可以看到里面包含的具体的策略明细。如上文所提的第一个策略失信风险策略,就是为具体的两条规则组成,分别是:
1.身份证比对信贷行业曾经逾期30天内中风险名单
2.多头借贷
最后命中的结果,分别是:
1.对于第一条规则,命中了的风险等级是中风险,并且名字的行业是信贷行业,具体命中的明细是信贷行业里曾经逾期(0~30天),这条规则
2.第二第二条规则,命中了多头借贷这条规则,并且命中的次数是11条,分别是持牌消费金融4条,互联网小贷4条,地方性小贷2条,现金借贷1条。
所以反馈到具体的策略分析跳回的数据来看,我们会发现经常收到两种代码:主拒绝码与子拒绝码
在策略分析上,我们通过是通过返回的主拒绝码来定位具体的客群命中的策略集,然后再通过拆分策略集中的规则来具体定位命中规则。
以某产品,设置的随机测试策略规则码配置为例:
我们会将反欺诈1+反欺诈2+反欺诈3+人工审核1/2都加入到这个测试事情中;其中反欺诈1是黑名单类策略,反欺诈2是设备类策略;
通过这个命中主规则码,我们来定位客群命中的情况;然后再下一层分析中会继续剥开,观察客群命中的具体是哪个规则:
另外的一些常见的核心的策略如以下:
…
~原创文章