之前介绍了简单介绍了决策引擎。今天这篇文章,再详细继续跟各位介绍下,决策引擎所涉及到的更全面的内容。
就像人的身体一样,身体里的各个器官的组成都是依赖于人体的每一个细胞,而器官之间的配合协调都是通过主动脉血液进行连接交互的。
而决策引擎里的最小的细胞单位组成是变量,而变量组合成一个个对应的规则包。最后每一个风险方案都是以规则包的形式配置的,再以业务流程作为交互。
整个策略引擎所涉及到的模块和框架如下:
在以上的所有涉及到的流程节点里,底层变量是我们整个决策引擎的最小单元,我们在里面部署具体的变量:如客户ID、性别sex、年龄age、教育程度edu等; 还有各种外部数据源变量,如tongdun.多头、bairong.策略包、baiqishi.黑名单等……
由变量再进一步衍生的单元,具体组合成:决策树、决策表、赋值索引、评分模型、普通规则、代码块、执行块、排除项等。
关于以上的模块,我们此处简单挑三个模块进行讲解。
1.评分模里的变量是需要分组设置,且变量间的设置的上下区间是卡在【lo,数值】与【数值,hi】的范围内,同时在不同的区间输出对应的分值。
2.对于衍生的中间变量,除了用到相应的加减乘除外,还会匹配相应的函数,如果取绝对值ABS,取日期data,最大值max…等
1.普通的规则就是单条的变量或者多条变量的判断,如年龄大于20岁,性别为男性,都是最简单的规则判断
2.规则集定义为互斥的规则,规则集内有优先级的顺序
3.规则集里有定位应用功能,如果没有引用的设置,可能是哪里出问题
4.规则集与政策规则集是需要保存生效的
1.决策引擎支持单笔测试页面,即单个变量的测试;也支持多个规则集的在线测试跟验证
2.自己在离线测试完之后,还需要进一步给到IT同事进行测试保证系统相应的功能都能通过
1.很多部署过或者了解过相关的决策引擎的同学,觉得决策引擎部署都不会很难,没什么干货性的知识可以学习的。
我们都不是单单学习决策引擎这个软件,都是以具体的风险流程为思路从而来学习决策引擎相关的部署流程等知识。而且望着那庞大的虚拟机跟一堆待整理的决策引擎的资料,不知该哭还是该笑。
2.决策引擎里有很多的细节性的操作,如果没有真正参与过决策引擎的部署或者动手实操过,或许真的不懂决策引擎的部署怎么生成一个jar文件。
在具体的操作过程中自动部署跟部署有什么区别?签名跟别名有什么区别?批注是需要在哪个节点完成?而且引擎里除了输入变量还有输出变量,需要进行变量初始化,以上这些知识是否已经了解了?…如果有兴趣了解这些问题的可以与我探讨。
---------------------- --------------------- ------------------------------------- ----------------------
十年职场生涯,这个长期混迹在风控界和科技界,摸爬滚打的大叔,曾经就职于全国最大的固网运营商平台、国内最大的ERP软件公司和一家老牌的互金公司,如果你想了解他,欢迎关注 “番茄风控大数据”一起学习一起聊!