在上次的课程中,我们跟大家讲解了风控流程中的客户画像跟贷中客群监控的内容。
数据监控,回顾其在整体上的风控业务中的作用,不管是需要部署什么样的策略,或者需要调整内容等,不可或缺的一项内容便是它。
数据监控是什么?数据监控就是根据不同的数据报表发现存在的问题,从而将问题解决,那我们平时又需要做哪些数据监控呢?
【贷前报表】:贷前的监控报表主要是反馈业务数据情况,包括整体业务流程的产品转化率/通过率/拒绝率、获客成本、渠道进件量、拒绝原因、额度使用情况等等报表,多个报表因素可以相互融合,以线上业务报表为例:
表中融合了产品转化率报表、通过率报表、额度使用率报表数据,可通过一份报表查阅是否存在通过率、放款率的波动的情况,从而进一步分析是否存在进件人群的问题、规则调整、模型不匹配等问题,是否需对当前策略进行调整。
【贷中报表】:贷中的监控报表主要是反馈现有风控策略是否适合于现在的业务或客群,包括客户切片数据、规则命中率报表、审核审批通过率报表、反欺诈监控报表、第三方监控报表、模型监控报表、额度报表、复购率等等的数据报表。
单规则监控报表:
单规则监控报表可以帮助风控人员及时发现异常规则,针对异常规则进行针对性的分析,是否需要调整该规则相关的策略内容;
额度报表:
额度报表可明确清晰知道现客群批核额度情况以及额度使用情况,是否存在额度虚高或者额度过低的情况,也可以结合客户切片数据确认是否存在额度向某部分客群严重倾斜的情况,从而判断是否需要调整额度体系;
第三方数据:
第三方数据监控可以观察第三方数据与现行业务的匹配性,以及可以发现第三方数据是否存在异常情况或者明显集中于某些分段,从而可判断该三方数据是否适用及是否需要调整,相关三方数据的策略调整可前往“三方数据规则cut-off调整,你学会了吗?”
【贷后报表】:贷后的监控报表主要是反馈风险把控情况,是否存在欺诈客户或逾期增长情况,是否需要收紧风险,包括vintage报表、FPD报表、DPD报表、催回率报表、迁徙率报表、坏账回收报表等;
vintage报表:
vintage报表是将不同月份放款的客群均按账龄时间进行观察,可通过vintage了解同一产品不同时期放款的资产质量情况,以及整体业务发展趋势,从而回推分析策略是否需要调整。
迁徙率报表:
迁徙率是处于某一逾期阶段的客户转到其他逾期阶段的变化情况,通常可以用来预测不同逾期阶段的未来坏账损失,迁徙率报表是与vintage报表紧密相连的报表,可以通过两个报表预测完整生命周期的逾期及坏账情况。
另外在以上监控内容中,最有必要学习的四大数据分析(监控工具),(在上周的会员课程中)也跟各位童鞋讲解具体聚焦在以下四个方面:
①Excel—必须掌握
必备要求:⭐⭐⭐⭐⭐
Excel无论是作为策略分析师还是模型师都必须掌握的一门技术。
基础功能:表格汇报、数据计算
高阶功能:VBA、时间序列分析
②Hive(sql)—必须掌握
必备要求:⭐⭐⭐⭐
几乎99%的互联网金融公司。都是基于Hive或者Mysql进行数据提取
基础语法:查询、建表、关联
中高级:窗口函数、自己写function
③可视化平台—展示数据的方式、中期掌握
必备要求:⭐⭐⭐⭐
传统:Excel、PPT
新型BI工具:Tableau、观远
④Python—后期可以掌握
必备要求:⭐⭐⭐⭐
数据清洗、模型使用
在整理汇总了以上信息上,相关的监控的汇总宽表可以输出到以下几个维度,以贷前监控报表为例,相关宽表的涉及维度详情如下:
①申请人信息
②客户(相关)信息
③金融产品信息
④拒绝原因
⑤三方信息
⑥在贷信息
以上关于数据监控相关更详细的内容,可继续关注:
…
~原创文章