信号与线性系统中响应在时域中的求解(第二章)

一.引言

在系统的微分方程中,包含有表示激励和响应的时间函数以及他们对于时间的各阶导数的线性组合。系统的复杂性常由系统的阶数来表示,系统阶数就是描述该系统的微分方程的阶数。

  • 近代时域法
    近代时域法将响应分为零输入响应零状态响应
    r ( t ) = r z i ( t ) + r z s ( t ) r(t)=r_{zi}(t)+r_{zs}(t) r(t)=rzi(t)+rzs(t)

    零输入响应 r z i ( t ) r_{zi}(t) rzi(t):系统无外加激励,仅由初始状态(储能)引起的响应。
    零状态响应 r z s ( t ) r_{zs}(t) rzs(t):系统无初始状态(储能),仅由外加激励引起的响应。
    全响应 r ( t ) r(t) r(t)

二.系统方程的算子表示

1.微分算子表示方法

  • 描写线性系统的激励函数和响应函数间的关系的微分方程如:
    a n ⋅ d n r d t n + a n − 1 ⋅ d n − 1 r d t n − 1 + ⋯ + a 1 ⋅ d r d t + a 0 ⋅ r = b m ⋅ d m e d t m + b m − 1 ⋅ d m − 1 e d t m − 1 + ⋯ + b 1 ⋅ d e d t + b 0 ⋅ e (1) a_{n}\cdot \frac{d^nr}{dt^n}+a_{n-1}\cdot \frac{d^{n-1}r}{dt^{n-1}}+\cdots+a_{1}\cdot \frac{dr}{dt}+a_{0}\cdot r = b_{m}\cdot \frac{d^me}{dt^m}+b_{m-1}\cdot \frac{d^{m-1}e}{dt^{m-1}}+\cdots+b_{1}\cdot \frac{de}{dt}+b_{0}\cdot e\tag{1} andtndnr+an1dtn1dn1r++a1dtdr+a0r=bmdtmdme+bm1dtm1dm1e++b1dtde+b0e(1)

  • ( 1 ) (1) (1) d n d t n \frac{d^n}{dt^n} dtndn d d t \frac{d}{dt} dtd等为时域中的微分算子符,定义用 p p p来表示,可将等式 ( 1 ) (1) (1)写为等式 ( 2 ) (2) (2)
    a n ⋅ p n ⋅ r + a n − 1 ⋅ p n − 1 ⋅ r + ⋯ + a 1 ⋅ p ⋅ r + a 0 ⋅ r = b m ⋅ p m ⋅ e + b m − 1 ⋅ p m − 1 ⋅ e + ⋯ + b 1 ⋅ p ⋅ e + b 0 ⋅ e (2) a_{n}\cdot p^n\cdot r+a_{n-1}\cdot p^{n-1}\cdot r+\cdots+a_{1}\cdot p\cdot r+a_{0}\cdot r=b_{m}\cdot p^m\cdot e+b_{m-1}\cdot p^{m-1}\cdot e+\cdots+b_{1}\cdot p\cdot e+b_{0}\cdot e\tag{2} anpnr+an1pn1r++a1pr+a0r=bmpme+bm1pm1e++b1pe+b0e(2)

  • 同时又把积分算子符号表示为 1 p \frac{1}{p} p1,即:
    ∫ − ∞ t ( ) d τ = 1 p ( ) \int\limits_{-\infty}^t()d\tau=\frac{1}{p}() t()dτ=p1()

2.微分算子运算规则

1).由微分算子 p p p组成的多项式运算也可以像代数式那样相乘和因式分解以及分配律和结合律一样适用
( p + a ) ⋅ ( p + b ) = p 2 + ( a + b ) p + a b (p+a)\cdot (p+b)=p^2+(a+b)p+ab (p+a)(p+b)=p2+(a+b)p+ab
p 2 + p + a = p 2 + ( p + a ) p^2+p+a=p^2+(p+a) p2+p+a=p2+(p+a)
p ⋅ ( a + b ) = p ⋅ a + p ⋅ b p\cdot (a+b)=p\cdot a+p\cdot b p(a+b)=pa+pb

2).算子方程中涉及到乘除计算时,代数的运算法则有时成立有时不成立,例如
p ⋅ 1 p ≠ 1 p ⋅ p p\cdot \frac{1}{p}\not ={\frac{1}{p}\cdot p} pp1=p1p

p ⋅ 1 p p\cdot \frac{1}{p} pp1:表示先积分再微分,积分得到的3常数项在微分是被去掉
1 p ⋅ p \frac{1}{p}\cdot p p1p:表示先微分再积分,最后积分会得到一个常数项 C C C C ≠ 0 C\not ={0} C=0的时候两个等式是不成立的

3).可以将 ( 2 ) (2) (2)的式子整合为:
D ( p ) = a n ⋅ p n + a n − 1 ⋅ p n − 1 + ⋯ + a 1 ⋅ p + a 0 (3) D(p)=a_{n}\cdot p^n+a_{n-1}\cdot p^{n-1} +\cdots+a_{1}\cdot p +a_{0}\tag{3} D(p)=anpn+an1pn1++a1p+a0(3)
N ( p ) = b m ⋅ p m + b m − 1 ⋅ p m − 1 + ⋯ + b 1 ⋅ p + b 0 (4) N(p)=b_{m}\cdot p^m+b_{m-1}\cdot p^{m-1}+\cdots+b_{1}\cdot p+b_{0}\tag{4} N(p)=bmpm+bm1pm1++b1p+b0(4)

  • ( 2 ) ( 3 ) ( 4 ) (2)(3)(4) (2)(3)(4)可得:

D ( p ) ⋅ r ( t ) = N ( p ) ⋅ e ( t ) (5) D(p)\cdot r(t)=N(p)\cdot e(t)\tag{5} D(p)r(t)=N(p)e(t)(5)

  • D ( p ) D(p) D(p)放到右边可得:
    r ( t ) = N ( p ) D ( p ) ⋅ e ( t ) (6) r(t)=\frac{N(p)}{D(p)}\cdot e(t) \tag{6} r(t)=D(p)N(p)e(t)(6)
  • 简化表示:
    H ( p ) = N ( p ) D ( p ) (7) H(p)=\frac{N(p)}{D(p)} \tag{7} H(p)=D(p)N(p)(7)

H ( p ) H(p) H(p)为整电路中对激励进行操作的运算,经过该电路的激励需要经过的运算。从数学运算上完成求解响应。
即:
r ( t ) = H ( p ) ⋅ e ( t ) (8) r(t)=H(p)\cdot e(t)\tag{8} r(t)=H(p)e(t)(8)

三.零输入响应

零输入响应正是由初始系统能量分布状态,即初始条件所决定的。

  • 零输入响应时, e ( t ) = 0 e(t)=0 e(t)=0所以可得:
    D ( p ) r ( t ) = ( a n ⋅ p n + a n − 1 ⋅ p n − 1 + ⋯ + a 1 ⋅ p + a 0 ) r ( t ) = 0 (9) D(p)r(t)=(a_{n}\cdot p^n+a_{n-1}\cdot p^{n-1}+\cdots+a_{1}\cdot p+a_{0})r(t)=0 \tag{9} D(p)r(t)=(anpn+an1pn1++a1p+a0)r(t)=0(9)

  • 这时我们可以看出这个需要用到高数中微分方程的齐次解的经典求法:
    1).特征方程:
    a n ⋅ p n + a n − 1 ⋅ p n − 1 + ⋯ + a 1 ⋅ p + a 0 = 0 (10) a_{n}\cdot p^n+a_{n-1}\cdot p^{n-1}+\cdots+a_{1}\cdot p+a_{0}=0 \tag{10} anpn+an1pn1++a1p+a0=0(10)
    2).化简可得:
    ( p n − λ n ) ⋅ ( p n − 1 − λ n − 1 ) ⋯ ( p − λ 1 ) = 0 (11) (p^n-\lambda_{n})\cdot(p^{n-1}-\lambda_{n-1})\cdots(p-\lambda_{1})=0 \tag{11} (pnλn)(pn1λn1)(pλ1)=0(11)
    3).解得:
    r ( t ) = c 1 e λ 1 ⋅ t + c 2 e λ 2 ⋅ t + ⋯ + c n e λ n ⋅ t (12) r(t)=c_{1}e^{\lambda_{1}\cdot t}+c_{2}e^{\lambda_{2}\cdot t}+\cdots+c_{n}e^{\lambda_{n}\cdot t} \tag{12} r(t)=c1eλ1t+c2eλ2t++cneλnt(12)

  • 系数 c x c_{x} cx求解:
    1).方法一:
    r ( 0 ) , r ′ ( 0 ) , ⋯   , r n − 1 ( 0 ) r(0),r^{\prime} (0),\cdots,r^{n-1} (0) r(0),r(0),,rn1(0)代入下面式中求解
    { r ( 0 ) = c 1 + c 2 + ⋯ + c n r ′ ( 0 ) = c 1 ⋅ λ 1 + c 2 ⋅ λ 2 + ⋯ + c n ⋅ λ n r ′ ′ ( 0 ) = c 1 ⋅ λ 1 2 + c 2 ⋅ λ 2 2 + ⋯ + c n ⋅ λ n 2 r ′ ′ ′ ( 0 ) = c 1 ⋅ λ 1 3 + c 2 ⋅ λ 2 3 + ⋯ + c n ⋅ λ n 3 ⋮ r n − 1 ( 0 ) = c 1 ⋅ λ 1 n − 1 + c 2 ⋅ λ 2 n − 1 + ⋯ + c n ⋅ λ n n − 1 (13) \left\{ \begin{aligned} r(0)&=c_{1}+c_{2}+\cdots+c_{n} \\ r^{\prime} (0)&=c_{1}\cdot\lambda_{1}+c_{2}\cdot\lambda_{2}+\cdots+c_{n}\cdot\lambda_{n} \\ r^{\prime \prime} (0)&=c_{1}\cdot\lambda_{1}^2+c_{2}\cdot\lambda_{2}^2+\cdots+c_{n}\cdot\lambda_{n}^2 \\ r^{\prime \prime \prime} (0)&=c_{1}\cdot\lambda_{1}^3+c_{2}\cdot\lambda_{2}^3+\cdots+c_{n}\cdot\lambda_{n}^3 \\ &\vdots&\\ r^{n-1} (0)&=c_{1}\cdot\lambda_{1}^{n-1}+c_{2}\cdot\lambda_{2}^{n-1}+\cdots+c_{n}\cdot\lambda_{n}^{n-1} \end{aligned} \right.\tag{13} r(0)r(0)r(0)r(0)rn1(0)=c1+c2++cn=c1λ1+c2λ2++cnλn=c1λ12+c2λ22++cnλn2=c1λ13+c2λ23++cnλn3=c1λ1n1+c2λ2n1++cnλnn1(13)
    2).方法二:
    由式 ( 13 ) (13) (13)可以记为如下矩阵:
    [ r ( 0 ) r ′ ( 0 ) r ′ ′ ′ ( 0 ) ⋮ r n − 1 ( 0 ) ] = [ 1 1 1 ⋯ 1 λ 1 λ 2 λ 3 ⋯ λ n λ 1 2 λ 2 2 λ 3 2 ⋯ λ n 2 ⋮ ⋮ ⋮ ⋮ λ 1 n − 1 λ 2 n − 1 λ 3 n − 1 ⋯ λ n n − 1 ] ⋅ [ c 1 c 2 c 3 ⋮ c n ] . \left[ \begin{matrix} r(0)\\r^{\prime} (0)\\r^{\prime \prime \prime} (0)\\\vdots\\ r^{n-1} (0) \end{matrix} \right] = \left[ \begin{matrix} 1&1&1&\cdots&1\\ \lambda_{1}&\lambda_{2}&\lambda_{3}&\cdots&\lambda_{n}\\ \lambda_{1}^2&\lambda_{2}^2&\lambda_{3}^2&\cdots&\lambda_{n}^2\\ \vdots&\vdots&\vdots& &\vdots\\ \lambda_{1}^{n-1}&\lambda_{2}^{n-1}&\lambda_{3}^{n-1}&\cdots&\lambda_{n}^{n-1} \end{matrix} \right] \cdot \left[ \begin{matrix} c_{1}\\ c_{2}\\ c_{3}\\\vdots\\c_{n} \end{matrix} \right]. r(0)r(0)r(0)rn1(0)=1λ1λ12λ1n11λ2λ22λ2n11λ3λ32λ3n11λnλn2λnn1c1c2c3cn.

    • 应用克拉默定理转化

[ c 1 c 2 c 3 ⋮ c n ] = [ 1 1 1 ⋯ 1 λ 1 λ 2 λ 3 ⋯ λ n λ 1 2 λ 2 2 λ 3 2 ⋯ λ n 2 ⋮ ⋮ ⋮ ⋮ λ 1 n − 1 λ 2 n − 1 λ 3 n − 1 ⋯ λ n n − 1 ] − 1 ⋅ [ r ( 0 ) r ′ ( 0 ) r ′ ′ ′ ( 0 ) ⋮ r n − 1 ( 0 ) ] (14) \left[ \begin{matrix} c_{1}\\ c_{2}\\ c_{3}\\\vdots\\c_{n} \end{matrix} \right] = \left[ \begin{matrix} 1&1&1&\cdots&1\\ \lambda_{1}&\lambda_{2}&\lambda_{3}&\cdots&\lambda_{n}\\ \lambda_{1}^2&\lambda_{2}^2&\lambda_{3}^2&\cdots&\lambda_{n}^2\\ \vdots&\vdots&\vdots& &\vdots\\ \lambda_{1}^{n-1}&\lambda_{2}^{n-1}&\lambda_{3}^{n-1}&\cdots&\lambda_{n}^{n-1} \end{matrix} \right]^{-1} \cdot \left[ \begin{matrix} r(0)\\r^{\prime} (0)\\r^{\prime \prime \prime} (0)\\\vdots\\ r^{n-1} (0) \end{matrix} \right] \tag{14} c1c2c3cn=1λ1λ12λ1n11λ2λ22λ2n11λ3λ32λ3n11λnλn2λnn11r(0)r(0)r(0)rn1(0)(14)

  • 补充:可逆矩阵求法:
    A ⋅ E = E ⋅ A − 1 (15) A\cdot E=E\cdot A^{-1} \tag{15} AE=EA1(15)
    所以零输入响应结果为:
    r z i ( t ) = r ( t ) = c 1 e λ 1 ⋅ t + c 2 e λ 2 ⋅ t + ⋯ + c n e λ n ⋅ t (16) r_{zi}(t)=r(t)=c_{1}e^{\lambda_{1}\cdot t}+c_{2}e^{\lambda_{2}\cdot t}+\cdots+c_{n}e^{\lambda_{n}\cdot t} \tag{16} rzi(t)=r(t)=c1eλ1t+c2eλ2t++cneλnt(16)

四.零状态响应

(一).奇异函数

(1).阶跃函数

定义
ϵ ( t ) = { 1 , t > 0 0 , t < 0 (17) \epsilon(t) = \left\{ \begin{aligned} &1&,&t>0\\ &0&,&t<0 \end{aligned} \right. \tag{17} ϵ(t)={10,,t>0t<0(17)
为单位阶跃函数,如果给他乘上一个常数 E E E,即:
u a ( t ) = { E , t > 0 0 , t < 0 (18) u_{a}(t) = \left\{ \begin{aligned} &E&,&t>0\\ &0&,&t<0 \end{aligned} \right. \tag{18} ua(t)={E0,,t>0t<0(18)
称为阶跃函数。

函数说明:

  • 函数 ϵ ( t ) \epsilon(t) ϵ(t) t = 0 t=0 t=0时发生跃变。
  • 同时 ϵ ( t − t 1 ) \epsilon(t-t_{1}) ϵ(tt1) t = t 1 t=t_{1} t=t1时发生跃变。
  • 任何一个函数 f ( t ) f(t) f(t)乘以 ϵ ( t − t 1 ) \epsilon(t-t_{1}) ϵ(tt1)后可得:
    f ( t ) ⋅ ϵ ( t − t 1 ) = { f ( t ) , t > t 1 0 , t < t 1 (19) f(t) \cdot \epsilon(t-t_{1})=\left \{ \begin{aligned} &f(t)&,&t>t_{1}\\ &0&,&t<t_{1} \end{aligned} \right . \tag{19} f(t)ϵ(tt1)={f(t)0,,t>t1t<t1(19)
    这个性质我称之为取范围确定定义域
  • 补充:门函数与阶跃函数之间的关系
    G τ ( t − t 1 ) = ϵ ( t − t 1 − τ 2 ) − ϵ ( t − t 1 + τ 2 ) (20) G_{\tau}(t-t_{1}) = \epsilon(t-t_{1} - \frac{\tau}{2}) - \epsilon(t-t_{1}+\frac{\tau}{2}) \tag{20} Gτ(tt1)=ϵ(tt12τ)ϵ(tt1+2τ)(20)
    τ \tau τ为门函数的门宽;
    t 1 t_{1} t1为门函数对称轴的横坐标。

(2).冲激函数

1.定义:在极限情况下,得到一个脉冲函数 δ ( t ) \delta(t) δ(t),它在 t ≠ 0 t\not ={0} t=0时, δ ( t ) = 0 \delta(t)=0 δ(t)=0;它在 t = 0 t=0 t=0时, δ ( t ) = 1 \delta(t)=1 δ(t)=1;即:
{ ∫ a b δ ( t ) ⋅ d t = 1 , t = 0 δ ( t ) = 0 , t ≠ 0 (21) \left \{ \begin{aligned} &\int_a^b \delta(t)\cdot dt&=1&,&t=0\\ &\delta(t)&=0&,&t\not ={0} \end{aligned} \right. \tag{21} abδ(t)dtδ(t)=1=0,,t=0t=0(21)
2.运算规则
∫ − ∞ + ∞ f ( t ) ⋅ δ ( t ) d t = f ( 0 ) ∫ − ∞ + ∞ δ ( t ) d t = f ( 0 ) (22) \int_{- \infty}^{+ \infty}f(t) \cdot \delta(t) dt=f (0)\int_{- \infty}^{+ \infty} \delta(t) d t=f(0) \tag{22} +f(t)δ(t)dt=f(0)+δ(t)dt=f(0)(22)
注:冲击函数在整个定义域中积分值为1
推广:
∫ − ∞ + ∞ f ( t ) ⋅ δ ( t − t 0 ) d t = f ( t 0 ) ∫ − ∞ + ∞ δ ( t − t 0 ) d t (23) \int_{- \infty}^{+ \infty} f (t) \cdot \delta (t-t0) d t=f (t0)\int_{- \infty}^{+ \infty} \delta(t-t0) d t \tag{23} +f(t)δ(tt0)dt=f(t0)+δ(tt0)dt(23)
∵ ∫ − ∞ + ∞ δ ( t − t 0 ) d t = 1 (24) \because \int_{- \infty}^{+ \infty} \delta(t-t0) d t=1\tag{24} +δ(tt0)dt=1(24)
∫ − ∞ + ∞ f ( t ) ⋅ δ ( t − t 0 ) d t = f ( t 0 ) (25) \int_{- \infty}^{+ \infty} f (t) \cdot \delta (t-t0) d t=f(t0)\tag{25} +f(t)δ(tt0)dt=f(t0)(25)
该运算性质称为抽样性质,在求解零状态时作为中转函数进行取样得到对应时间点 t 0 t0 t0点处的激励或者响应值

(3).阶跃函数和冲击函数之间的关系

{ δ ( t ) = d ϵ ( t ) d t ϵ ( t ) = ∫ − ∞ + ∞ δ ( t ) ⋅ d t (26) \left \{ \begin{aligned} &\delta (t)&=&\frac{d \epsilon (t) }{d t}\\ &\epsilon (t) &=& \int_{- \infty}^{+ \infty} \delta(t)\cdot dt \end{aligned} \right. \tag{26} δ(t)ϵ(t)==dtdϵ(t)+δ(t)dt(26)

(二).阶跃和冲激响应

对于一个线性非时变系统,如果在施加激励函数 e ( t ) e(t) e(t)时得到相应函数 r ( t ) r(t) r(t)则必有在施加激励函数
lim ⁡ Δ t → 0 e ( t ) − e ( t − Δ t ) Δ t = Δ t (27) \lim_{\Delta t \rightarrow 0} \frac{e(t)-e(t-\Delta t)}{\Delta t}=\Delta t \tag{27} Δt0limΔte(t)e(tΔt)=Δt(27)
时将得到响应函数
lim ⁡ Δ t → 0 r ( t ) − r ( t − Δ t ) Δ t = Δ t (28) \lim_{\Delta t \rightarrow 0} \frac{r(t)-r(t-\Delta t)}{\Delta t}=\Delta t \tag{28} Δt0limΔtr(t)r(tΔt)=Δt(28)
同时当激励函数 d d t e ( t ) \frac{d}{d t}e(t) dtde(t)时,响应函数为 d d t r ( t ) \frac{d}{d t}r(t) dtdr(t)

  • 下面开始推导如何求零状态响应

    单位冲激响应以符号 h ( t ) h(t) h(t)
    单位阶跃响应符号: r ϵ ( t ) r_{\epsilon}(t) rϵ(t)
    由阶跃函数和冲击函数之间的关系可得:
    h ( t ) = d d t r ϵ ( t ) (29) h(t)= \frac{d}{ d t}r_{\epsilon}(t) \tag{29} h(t)=dtdrϵ(t)(29)
    也可以得到单位阶跃响应是单位冲激响应的积分的结论:
    r ϵ ( t ) = ∫ 0 − t h ( τ ) d τ (30) r_{\epsilon}(t)= \int_{0^-}^t h(\tau) d\tau \tag{30} rϵ(t)=0th(τ)dτ(30)


  • 从激励到响应是经过一个作用来完成的,用数学表达式表示为等式 ( 6 ) (6) (6): r ( t ) = H ( p ) ⋅ e ( t ) r(t)=H(p)\cdot e(t) r(t)=H(p)e(t) ;对响应 e ( t ) e(t) e(t)进行作用的是 H ( p ) H(p) H(p)

  • 先解释一下 H ( p ) H(p) H(p)到底是什么
    举几个例子吧
    1.若 r ( t ) r(t) r(t)为电流, e ( t ) e(t) e(t)为电压,那么这里的 H ( p ) H(p) H(p)就是导纳,相当于 Y Y Y
    2.若 r ( t ) r(t) r(t)为电压, e ( t ) e(t) e(t)为电流,那么这里的 H ( p ) H(p) H(p)就是阻抗,相当于 Z Z Z
    那么现在可以大致的理解了,这个 H ( p ) H(p) H(p)就是在输入输出中间作用的黑箱子。

  • 当激励函数 e ( t ) e(t) e(t)为单位冲激函数 δ ( t ) \delta (t) δ(t);
    当响应函数 r ( t ) r(t) r(t)为系统的冲激响应 h ( t ) h(t) h(t)
    可以表示成微分算子的形式:
    h ( t ) = H ( p ) ⋅ δ ( t ) (31) h(t)=H(p)\cdot \delta (t)\tag{31} h(t)=H(p)δ(t)(31)

    H ( p ) = a n ⋅ p n + a n − 1 ⋅ p n − 1 + ⋯ + a 1 ⋅ p + a 0 b m ⋅ p m + b m − 1 ⋅ p m − 1 + ⋯ + b 1 ⋅ p + b 0 (32) H(p)=\frac{a_{n}\cdot p^n+a_{n-1}\cdot p^{n-1} +\cdots+a_{1}\cdot p +a_{0}}{b_{m}\cdot p^m+b_{m-1}\cdot p^{m-1}+\cdots+b_{1}\cdot p+b_{0}}\tag{32} H(p)=bmpm+bm1pm1++b1p+b0anpn+an1pn1++a1p+a0(32)
    可化简为
    H ( p ) ⋅ δ ( t ) = k 1 p − λ 1 ⋅ δ ( t ) + k 2 p − λ 2 ⋅ δ ( t ) + ⋯ + k n p − λ n ⋅ δ ( t ) (33) H(p) \cdot \delta(t)=\frac{k_{1}}{p-\lambda_{1}}\cdot \delta(t)+ \frac{k_{2}}{p-\lambda_{2}}\cdot \delta(t)+ \cdots+ \frac{k_{n}}{p-\lambda_{n}}\cdot \delta(t)\tag{33} H(p)δ(t)=pλ1k1δ(t)+pλ2k2δ(t)++pλnknδ(t)(33)
    由公式:
    k 1 p − λ 1 ⋅ δ ( t ) = k 1 ⋅ e λ 1 t ϵ ( t ) \frac{k_{1}}{p-\lambda_{1}}\cdot \delta(t)=k_{1} \cdot e^{\lambda_{1} t} \epsilon (t) pλ1k1δ(t)=k1eλ1tϵ(t)
    k ( p − λ ) 2 ⋅ δ ( t ) = k ⋅ t ⋅ e λ t ϵ ( t ) \frac{k}{(p-\lambda)^2}\cdot \delta(t)=k \cdot t \cdot e^{\lambda t} \epsilon (t) (pλ)2kδ(t)=kteλtϵ(t)
    k ( p − λ ) n ⋅ δ ( t ) = k ⋅ t n − 1 ( n − 1 ) ! ⋅ e λ t ϵ ( t ) \frac{k}{(p-\lambda)^n}\cdot \delta(t)=k \cdot \frac{t^{n-1}}{(n-1)!} \cdot e^{\lambda t} \epsilon (t) (pλ)nkδ(t)=k(n1)!tn1eλtϵ(t)
    可得:
    h ( t ) = ∑ i = 1 n k i ⋅ e λ i t ⋅ ϵ ( t ) (34) h(t)=\sum_{i=1}^n k_{i} \cdot e^{\lambda_{i} t} \cdot \epsilon (t)\tag{34} h(t)=i=1nkieλitϵ(t)(34)


(三).叠加积分

  • 假设线性非时变系统的冲击响应为 h ( t ) h(t) h(t)
    (1)根据时不变特性,系统对 δ ( t − τ ) \delta(t-\tau) δ(tτ)的响应为 h ( t − τ ) h(t-\tau) h(tτ);
    (2)根据齐次性,系统对 e ( τ ) δ ( t − τ ) e(\tau)\delta(t-\tau) e(τ)δ(tτ)的响应为 e ( τ ) h ( t − τ ) e(\tau)h(t-\tau) e(τ)h(tτ)

    • 解释 一下这个 e ( τ ) δ ( t − τ ) e(\tau)\delta(t-\tau) e(τ)δ(tτ) e ( τ ) h ( t − τ ) e(\tau)h(t-\tau) e(τ)h(tτ)
      e ( τ ) δ ( t − τ ) e(\tau)\delta(t-\tau) e(τ)δ(tτ)利用抽样性质,取得 e ( τ ) e(\tau) e(τ) t t t时刻的函数值 e ( t ) e(t) e(t)
      同时 e ( τ ) h ( t − τ ) e(\tau)h(t-\tau) e(τ)h(tτ)是在对 e ( τ ) e(\tau) e(τ)的响应函数在 t t t时刻的抽样

    (3)根据叠加性,系统对 ∫ 0 t e ( τ ) δ ( t − τ ) d τ \int_0^t e(\tau)\delta(t-\tau) d\tau 0te(τ)δ(tτ)dτ的响应为 ∫ 0 t e ( τ ) h ( t − τ ) d τ \int_0^te(\tau)h(t-\tau) d\tau 0te(τ)h(tτ)dτ
    由此系统对 e ( t ) = ∫ 0 t e ( τ ) δ ( t − τ ) d τ e(t)=\int_0^t e(\tau)\delta(t-\tau) d\tau e(t)=0te(τ)δ(tτ)dτ的响应为 r ( t ) = ∫ 0 t e ( τ ) h ( t − τ ) d τ r(t)=\int_0^te(\tau)h(t-\tau) d\tau r(t)=0te(τ)h(tτ)dτ


由上面可得阶跃响应
r ( t ) = ∫ 0 − t e ( τ ) h ( t − τ ) d τ (35) r(t)=\int_{0^-}^te(\tau)h(t-\tau) d\tau\tag{35} r(t)=0te(τ)h(tτ)dτ(35)

最终就得到了零状态响应
r z s ( t ) = r ( t ) r_{zs}(t)=r(t) rzs(t)=r(t)


上面可以得到 r ( t ) = e ( t ) ∗ h ( t ) r(t)=e(t)*h(t) r(t)=e(t)h(t)是由激励和冲激响应卷积的得到的。

  • 总的写出来为:
    r z s ( t ) = r ( t ) = ∫ 0 − t e ( τ ) h ( t − τ ) d τ = ∫ − ∞ + ∞ e ( τ ) ⋅ H ( p ) ⋅ δ ( t − τ ) d τ = H ( p ) ⋅ ∫ − ∞ + ∞ e ( τ ) ⋅ δ ( t − τ ) d τ = H ( p ) ⋅ e ( t ) (36) r_{zs}(t)=r(t)=\int_{0^-}^te(\tau)h(t-\tau) d\tau =\int_{- \infty}^{+ \infty} e(\tau) \cdot H(p) \cdot \delta (t-\tau) d\tau=H(p) \cdot \int_{- \infty}^{+ \infty} e(\tau)\cdot \delta (t-\tau) d\tau=H(p) \cdot e(t)\tag{36} rzs(t)=r(t)=0te(τ)h(tτ)dτ=+e(τ)H(p)δ(tτ)dτ=H(p)+e(τ)δ(tτ)dτ=H(p)e(t)(36)
    r z s ( t ) = r ( t ) = ∫ 0 − t e ( τ ) h ( t − τ ) d τ = ∫ 0 − t e ( τ ) ⋅ ∑ i = 1 n k i ⋅ e λ i ( t − τ ) ⋅ ϵ ( t − τ ) d τ = ∑ i = 1 n k i ⋅ e λ i t ⋅ ∫ 0 − t e ( τ ) ⋅ e − τ ⋅ ϵ ( t − τ ) d τ (37) r_{zs}(t)=r(t)=\int_{0^-}^te(\tau)h(t-\tau) d\tau = \int_{0^-}^t e(\tau) \cdot \sum_{i=1}^n k_{i} \cdot e^{\lambda_{i} (t-\tau)} \cdot \epsilon (t-\tau) d\tau= \sum_{i=1}^n k_{i} \cdot e^{\lambda_{i} t} \cdot\int_{0^-}^t e(\tau) \cdot e^{-\tau} \cdot \epsilon (t-\tau) d\tau \tag{37} rzs(t)=r(t)=0te(τ)h(tτ)dτ=0te(τ)i=1nkieλi(tτ)ϵ(tτ)dτ=i=1nkieλit0te(τ)eτϵ(tτ)dτ(37)

五.卷积积分

  • 定义:两个具有共同变量 t t t的函数 f 1 ( t ) f_{1}(t) f1(t) f 2 ( t ) f_{2}(t) f2(t)相卷积而成为第三个相同变量 t t t的函数 g ( t ) g(t) g(t),这种运算关系是由下式定义的:
    g ( t ) = f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ + ∞ f 1 ( τ ) ⋅ f 2 ( t − τ ) d τ (38) g(t) = f_{1}(t)*f_{2}(t)=\int_{- \infty}^{+ \infty }f_{1}( \tau ) \cdot f_{2}(t - \tau) d \tau\tag{38} g(t)=f1(t)f2(t)=+f1(τ)f2(tτ)dτ(38)
    卷积有时也称褶积

卷积积分的表格这个可以上网随便搜一个用就行
卷积积分表


  • 性质
    • 互换律:
      u ( t ) ∗ v ( t ) = v ( t ) ∗ u ( t ) (39-a) u(t)*v(t)=v(t)*u(t)\tag{39-a} u(t)v(t)=v(t)u(t)(39-a)
    • 分配律:
      u ( t ) ∗ [ v ( t ) + w ( t ) ] = u ( t ) ∗ v ( t ) + u ( t ) ∗ w ( t ) (39-b) u(t)*[v(t)+w(t)]=u(t)*v(t)+u(t)*w(t)\tag{39-b} u(t)[v(t)+w(t)]=u(t)v(t)+u(t)w(t)(39-b)
    • 结合律:
      u ( t ) ∗ [ v ( t ) ∗ w ( t ) ] = [ u ( t ) ∗ v ( t ) ] ∗ w ( t ) (39-c) u(t)*[v(t)*w(t)]=[u(t)*v(t)]*w(t)\tag{39-c} u(t)[v(t)w(t)]=[u(t)v(t)]w(t)(39-c)
    • 函数相卷积后的微分:
      d d t [ u ( t ) ∗ v ( t ) ] = d u ( t ) d t ∗ v ( t ) + u ( t ) ∗ d v ( t ) d t (39-d) \frac{d}{d t}[u(t)*v(t)]=\frac{d u(t)}{d t}*v(t) + u(t)*\frac{d v(t)}{d t }\tag{39-d} dtd[u(t)v(t)]=dtdu(t)v(t)+u(t)dtdv(t)(39-d)
    • 函数相卷积后的积分:
      ∫ − ∞ t [ u ( x ) ∗ v ( x ) ] d x = u ( t ) ∗ [ ∫ − ∞ t v ( x ) d x ] + [ ∫ − ∞ t u ( x ) d x ] ∗ v ( t ) (39-e) \int_{- \infty}^{t}[u(x)*v(x)] dx = u(t)*[\int_{- \infty}^{t}v(x)dx]+[\int_{- \infty}^{t}u(x)dx]*v(t)\tag{39-e} t[u(x)v(x)]dx=u(t)[tv(x)dx]+[tu(x)dx]v(t)(39-e)
    • 函数延时后的卷积:
      f 1 ( t ) ∗ f 2 ( t ) = g ( t ) (39-f1) f_{1}(t)*f_{2}(t) = g(t)\tag{39-f1} f1(t)f2(t)=g(t)(39-f1)
      f 1 ( t − t 1 ) ∗ f 2 ( t − t 2 ) = g ( t − t 1 − t 2 ) (39-f2) f_{1}(t-t_{1})*f_{2}(t - t_{2}) = g(t - t_{1} - t_{2})\tag{39-f2} f1(tt1)f2(tt2)=g(tt1t2)(39-f2)
    • 相关与卷积
      R x y ( t ) = ∫ − ∞ + ∞ x ( τ ) ⋅ y ( t − τ ) d τ R_{xy}(t) = \int_{- \infty}^{+ \infty}x(\tau) \cdot y(t - \tau) d \tau Rxy(t)=+x(τ)y(tτ)dτ
      R y X ( t ) = ∫ − ∞ + ∞ y ( τ ) ⋅ x ( t − τ ) d τ R_{yX}(t) = \int_{- \infty}^{+ \infty}y(\tau) \cdot x(t - \tau) d \tau RyX(t)=+y(τ)x(tτ)dτ
      R x y ( t ) = R y x ( − t ) (39-g) R_{xy}(t)=R_{yx}(-t)\tag{39-g} Rxy(t)=Ryx(t)(39-g)

六.线性系统的时域求解

(1).解题步骤:

  • 先根据题目得出
    D ( p ) ⋅ r ( t ) = N ( p ) ⋅ e ( t ) D(p)\cdot r(t)=N(p)\cdot e(t) D(p)r(t)=N(p)e(t)
  • 求零输入响应:( e ( t ) = 0 e(t)=0 e(t)=0
    D ( p ) ⋅ r ( t ) = 0 D(p)\cdot r(t)=0 D(p)r(t)=0
    • 根据 ( 10 ) ( 11 ) ( 12 ) (10)(11)(12) (10)(11)(12)可以求得:
      r z i ( t ) = r ( t ) = c 1 e λ 1 ⋅ t + c 2 e λ 2 ⋅ t + ⋯ + c n e λ n ⋅ t = ∑ i = 1 n c i ⋅ e λ i t ⋅ ϵ ( t ) r_{zi}(t)=r(t)=c_{1}e^{\lambda_{1}\cdot t}+c_{2}e^{\lambda_{2}\cdot t}+\cdots+c_{n}e^{\lambda_{n}\cdot t}=\sum_{i=1}^nc_{i} \cdot e^{\lambda_{i}t}\cdot \epsilon(t) rzi(t)=r(t)=c1eλ1t+c2eλ2t++cneλnt=i=1ncieλitϵ(t)
  • 求零状态响应:( e ( t ) ≠ 0 e(t) \not ={0} e(t)=0
    r ( t ) = N ( p ) D ( p ) ⋅ e ( t ) ⟶ r ( t ) = H ( p ) ⋅ e ( t ) r(t)=\frac{N(p)}{D(p)}\cdot e(t) \longrightarrow r(t)=H(p) \cdot e(t) r(t)=D(p)N(p)e(t)r(t)=H(p)e(t)
    • ( 33 ) ( 34 ) (33)(34) (33)(34)可先求得单位冲激响应 h ( t ) h(t) h(t)
      h ( t ) = ∑ i = 1 n k i ⋅ e λ i t ⋅ ϵ ( t ) h(t)=\sum_{i=1}^n k_{i} \cdot e^{\lambda_{i} t} \cdot \epsilon (t) h(t)=i=1nkieλitϵ(t)
      • k i k_{i} ki
        k i = H ( p ) ⋅ ( p − λ i ) ∣ p = λ i (40) k_{i} = H(p) \cdot (p - \lambda_{i}) \mid_{p = \lambda_i} \tag{40} ki=H(p)(pλi)p=λi(40)

        H ( p ) = k 1 p − λ 1 + k 2 p − λ 2 + ⋯ + k n p − λ n (41) H(p) =\frac{k_{1}}{p-\lambda_{1}}+ \frac{k_{2}}{p-\lambda_{2}}+ \cdots+ \frac{k_{n}}{p-\lambda_{n}}\tag{41} H(p)=pλ1k1+pλ2k2++pλnkn(41)
        ( 40 ) ( 41 ) (40)(41) (40)(41)可以求得 k i k_{i} ki

    • 通过卷积积分可以得到系统零状态响应为:
      r z s ( t ) = r ( t ) = e ( t ) ∗ h ( t ) = ∫ 0 − t e ( τ ) h ( t − τ ) d τ = ∑ i = 1 n k i ⋅ e λ i t ⋅ ∫ 0 − t e ( τ ) ⋅ e − τ ⋅ ϵ ( t − τ ) d τ r_{zs}(t)=r(t)= e(t)*h(t) =\int_{0^-}^te(\tau)h(t-\tau) d\tau = \sum_{i=1}^n k_{i} \cdot e^{\lambda_{i} t} \cdot\int_{0^-}^t e(\tau) \cdot e^{-\tau} \cdot \epsilon (t-\tau) d\tau rzs(t)=r(t)=e(t)h(t)=0te(τ)h(tτ)dτ=i=1nkieλit0te(τ)eτϵ(tτ)dτ
  • 由系统零状态响应和零输入响应分量组成全响应为:
    r ( t ) = r z i ( t ) + r z s ( t ) = { ∑ i = 1 n c i ⋅ e λ i t ⋅ ϵ ( t ) + ∑ i = 1 n k i ⋅ e λ i t ⋅ ∫ 0 − t e ( τ ) ⋅ e − τ ⋅ ϵ ( t − τ ) d τ } ⋅ ϵ ( t ) r(t)=r_{zi}(t)+r_{zs}(t)= \left \{ \sum_{i=1}^nc_{i} \cdot e^{\lambda_{i}t}\cdot \epsilon(t) + \sum_{i=1}^n k_{i} \cdot e^{\lambda_{i} t} \cdot\int_{0^-}^t e(\tau) \cdot e^{-\tau} \cdot \epsilon (t-\tau) d\tau \right \} \cdot \epsilon(t) r(t)=rzi(t)+rzs(t)={i=1ncieλitϵ(t)+i=1nkieλit0te(τ)eτϵ(tτ)dτ}ϵ(t)

(2).响应分解:

r ( t ) = r(t)= r(t)=零状态响应 + + +零输入响应=自然响应 + + +受迫响应=瞬态响应 + + +稳态响应

  • 自然响应:由零状态响应求得的 e λ i t e^{\lambda_i t} eλit中得 λ i \lambda_i λi,在化简后含有 e λ j t e^{\lambda_j t} eλjt项中 λ j = λ i \lambda_j=\lambda_i λj=λi的项的总和称为自然响应。
  • 受迫响应:除去自然响应后其他部分的总和为受迫响应。
  • 稳态响应:不含 e λ t e^{\lambda t} eλt项的总和。
  • 瞬态响应:除去稳态响应项后其他项的总和。

八.总结

由激励来得到响应计算过程比较固定,对电路或者黑匣子的作用要先了解才能得到 H ( p ) H(p) H(p),在求解中,得到 H ( p ) H(p) H(p)后其他的只要按照步骤完成计算就可得到结果,理解起来不容易,但是解题方法固定,还是比较好解的,主要式先要理解一下每个过程式为什么,取样时什么,阶跃函数和激励函数这两个只要理解其性质,对于整个求解过程就非常的明白了!

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Particle-ROS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值