信号与系统(3)- 受迫响应、自然响应以及零输入响应的求解

信号与系统(3)-受迫响应、自然响应以及零输入响应的求解

1. 什么是连续时间系统的时域分析?

连续时间系统的时域分析就是将系统构建为线性常系数微分方程,并对这个方程进行求解的过程,如下所示,并且这个线性常系数微分方程的解就是需要求解的系统响应。这个微分方程中,通常约定 r ( t ) r(t) r(t)为系统的响或系统的输出, e ( t ) e(t) e(t)为系统的激励或输入。为了求解这个系统的响应,可以从不同的角度理解。
a n d n d t n r ( t ) + a n − 1 d n − 1 d t n − 1 r ( t ) + . . . + a 1 d d t r ( t ) + a 0 r ( t ) = b m d m d t m e ( t ) + b m − 1 d m − 1 d t m − 1 e ( t ) + . . . + b 1 d d t e ( t ) + b 0 e ( t ) a_{n}\frac{d^{n}}{dt^{n}}r(t)+a_{n-1}\frac{d^{n-1}}{dt^{n-1}}r(t)+...+a_{1}\frac{d}{dt}r(t)+a_{0}r(t) =\\b_{m}\frac{d^{m}}{dt^{m}}e(t)+b_{m-1}\frac{d^{m-1}}{dt^{m-1}}e(t)+...+b_{1}\frac{d}{dt}e(t)+b_{0}e(t) andtndnr(t)+an1dtn1dn1r(t)+...+a1dtdr(t)+a0r(t)=bmdtmdme(t)+bm1dtm1dm1e(t)+...+b1dtde(t)+b0e(t)
如果将响应分解为自然响应和受迫响应,则自然响应对应于求解常系数微分方程的通解,受迫响应则对应于求解常系数线性微分方程的特解。在求解通解的过程中,将等式右边的激励信号置零,使方程成为线性常系数齐次微分方程,激励信号没有参与到系统的求解过程中,所以这样的解的形式只体现了系统本身的、自然的特性响应。而求解特解时,其特解的形式需要根据激励信号决定,所以是系统在激励之下做出的响应。

这里强调解的形式而不是方程的解,是因为不论通解还是特解,通常可以确定其形式,也就是说此时的解是有待定系数的,但是可以反应包含有什么样的信号分量等信息,而每个信号分量的待定系数需要结合初始条件和激励信号等综合求解。

如果将响应看为零输入响应和零状态响应,则零输入响应是在没有外界激励下,靠零时刻系统储能(初始条件)产生的响应。零状态响应则是将系统的状态置零,单纯考虑外界激励时系统的响应,求解则相对复杂。

所以对连续时间系统的时域分析,可以理解成求解系统的自然响应和受迫响应,或者理解成求解系统的零输入响应和零状态响应。

问题: 为什么零输入响应没有输入但仍然存在响应?

将系统分为零状态和零输入,其本质上是一种对研究问题的分类方法或者责任划分。

要理解划分依据,首先要理解”零时刻“是什么意思。"零时刻”是指从某时刻开始对系统进行观察的时刻,是一个相对概念。在这个时间节点之前,称为零时刻之前,在这个时间节点之后,称为零时刻之后。而在零时刻之前系统的响应和状态将使用在零时刻的初始条件来体现。所以,在零时刻之前的一切信息可以不用关注,通过初始条件,和零时刻之后的分析,便可以求解系统的全部特性和响应。

因此,所谓求解零输入响应,其含义便是将零时刻之前的所有特性通过初始条件体现,并利用初始条件所产生的响应,求解零时刻之前对零时刻之后的影响的过程。虽然零输入响应在零时刻没有添加激励,但是零时刻之前是存在信号的响应的,只不过使用了初始条件包含了那部分内容。

2. 如何建立系统的数学模型?

电系统的数学模型主要是根据KCL 和KVL方程获得的。线性非时变系统的微分方程一般形式为:
a n d n d t n r ( t ) + a n − 1 d n − 1 d t n − 1 r ( t ) + . . . + a 1 d d t r ( t ) + a 0 r ( t ) = b m d m d t m e ( t ) + b m − 1 d m − 1 d t m − 1 e ( t ) + . . . + b 1 d d t e ( t ) + b 0 e ( t ) a_{n}\frac{d^{n}}{dt^{n}}r(t)+a_{n-1}\frac{d^{n-1}}{dt^{n-1}}r(t)+...+a_{1}\frac{d}{dt}r(t)+a_{0}r(t) =\\b_{m}\frac{d^{m}}{dt^{m}}e(t)+b_{m-1}\frac{d^{m-1}}{dt^{m-1}}e(t)+...+b_{1}\frac{d}{dt}e(t)+b_{0}e(t) andtndnr(t)+an1dtn1dn1r(t)+...+a1dtdr(t)+a0r(t)=bmdtmdme(t)+bm1dtm1dm1e(t)+...+b1dtde(t)+b0e(t)
其中,几阶微分方程需要提供几个初始条件,否则方程具有不确定的解。
r < n − 1 > ( 0 ) , r < n − 2 > ( 0 ) , . . . , r ( 0 ) r^{<n-1>}(0),r^{<n-2>}(0),...,r(0) r<n1>(0),r<n2>(0),...,r(0)
回顾电路原理的知识,如下面简单的RLC谐振电路, x ( t ) x(t) x(t)为输入, u c ( t ) u_c(t) uc(t)为输出,

由KVL我们可以列出方程如下

d 2 d t 2 u c ( t ) + R L d d t u c ( t ) + 1 L C u c ( t ) = 1 L C x ( t ) \frac{d^2}{dt^2}u_{c}(t)+\frac{R}{L} \frac{d}{dt}u_{c}(t)+\frac{1}{L C} u_{c}(t)=\frac{1}{L C} x(t) dt2d2uc(t)+LRdtduc(t)+LC1uc(t)=LC1x(t)
其中,因为是二阶方程,因此应有两个初始条件,比如 u c ( 0 ) = 0 , u c ′ ( 0 ) = 0 u_c(0)=0,u_c'(0)=0 uc(0)=0uc0=0

问题:如何决定方程的阶数?为什么n阶微分方程需要n个初始条件?

如上图所示电路,为方便理解,将激励置零(置零的意思是:电压源短路,电流源断路),并且电路中的电流 i ( t ) i(t) i(t)为要求的响应,根据KVL可得:
u R ( t ) + u L ( t ) + u C ( t ) = 0 u_R(t)+u_L(t)+u_C(t)=0 uR(t)+uL(t)+uC(t)=0
根据电容,电感和电阻的伏安关系可知,设电流为 i ( t ) i(t) i(t)
u R ( t ) = R ⋅ i ( t ) u c ( t ) = 1 C ∫ − ∞ t i ( t ) d t u L ( t ) = L d d t i ( t ) \begin{aligned} &u_R(t)&=&R\cdot i(t)&\\ &u_c(t)&=&\frac{1}{C}\int_{-\infty}^{t}i(t)dt& \\ &u_L(t)& =& L\frac{d}{dt}i(t)& \end{aligned} uR(t)uc(t)uL(t)===Ri(t)C1ti(t)dtLdtdi(t)
将上式带入 u R ( t ) + u L ( t ) + u C ( t ) = 0 u_R(t)+u_L(t)+u_C(t)=0 uR(t)+uL(t)+uC(t)=0得:
R ⋅ i ( t ) + L d d t i ( t ) + 1 C ∫ − ∞ t i ( t ) d t = 0 R\cdot i(t)+L\frac{d}{dt}i(t)+\frac{1}{C}\int_{-\infty}^{t}i(t)dt=0 Ri(t)+Ldtdi(t)+C1ti(t)dt=0
将等式两边同时进行微分得:
R d d t i ( t ) + L d 2 d t 2 i ( t ) + 1 C i ( t ) = 0 , 或   R i ′ ( t ) + L i ′ ′ ( t ) + 1 C i ( t ) = 0 R\frac{d}{dt}i(t)+L\frac{d^2}{dt^2}i(t)+\frac{1}{C}i(t)=0, 或\space Ri'(t)+Li''(t)+\frac{1}{C}i(t)=0 Rdtdi(t)+Ldt2d2i(t)+C1i(t)=0, Ri(t)+Li(t)+C1i(t)=0
由上式可见,每多一个储能元件(电容或电感),则微分方程在化简的时候就多一次微分,所以阶次便高一阶。所以有几个储能元件,就会存在几阶的微分方程

电容和电感均为储能元件,因此电路中每一个电容或电感都应有一个初始值,而电容或电感的数量等于方程的阶数,因此N阶微分方程需要N个初始条件。在电路中,所以本质是因为N个储能元件需要N个初始值。有时候初始条件可能不会直接针对每个储能元件给出,但是通过计算是可以得到每个储能原件的初始条件的。

问题:如何理解初始状态,这些初始状态如何反应到电路中?

仍然讨论是上面的电路,但是激励信号置零,假设给出两个初始条件 i ( 0 ) = 0 i(0)=0 i(0)=0以及 i ′ ( 0 ) = 1 i'(0)=1 i(0)=1。通过 i ( 0 ) i(0) i(0)可以知道,在零时刻上述电路中回路中电流为0,所以电阻 R R R两端没有压降,因此 u L ( 0 ) = u C ( 0 ) u_L(0)=u_C(0) uL(0)=uC(0)。根据 u L ( t ) = L d d t i ( t ) u_L(t)=L\frac{d}{dt}i(t) uL(t)=Ldtdi(t)可以知道当 i ′ ( 0 ) = 1 i'(0)=1 i(0)=1时, u L ( 0 ) = L u_L(0)=L uL(0)=L。因此 u C ( 0 ) = u L ( 0 ) = L ( 取 数 值 ) u_C(0)=u_L(0)=L(取数值) uC(0)=uL(0)=L()。所以,根据初始条件,在电路中电感的初始电流为0A,电容的初始电压为1V。

3. 时域上如何求解系统响应?

时域上求解系统响应这里介绍时域经典法卷积法两种方法。后期还可以使用频域法求解。

时域经典法和高等数学中对线性常系数微分方程的方法一致,其得出的响应分别为自然响应和受迫响应。卷积法中,求解零输入响应时,需通过求解齐次微分方程得到,而求解零状态响应时,则需要用卷积积分的方法求得。

3.1 时域法或经典法(求解自然响应和受迫响应)

在对系统建模完成之后,经典法本质上是高等数学中对常系数线性微分方程的求解方法。这里举例说明:

如求下列系统的的全响应(不带重根情况,即特征方程没有相同的根):
d 2 r ( t ) d t 2 + 3 d r ( t ) d t + 2 r ( t ) = d e ( t ) d t + 2 e ( t ) ; 激励信号: e ( t ) = t 2 , 初始条件 : r ( 0 ) = 1 , r ′ ( 0 ) = 1 \frac{d^2r(t)}{dt^2}+3\frac{dr(t)}{dt}+2r(t)=\frac{de(t)}{dt}+2e(t); \\\text{激励信号:}e(t)=t^2,\\\text{初始条件}:r(0)=1,r'(0)=1 dt2d2r(t)+3dtdr(t)+2r(t)=dtde(t)+2e(t);激励信号:e(t)=t2,初始条件r(0)=1,r(0)=1
首先由原微分方程 d 2 r ( t ) d t 2 + 3 d r ( t ) d t + 2 r ( t ) = d e ( t ) d t + 2 e ( t ) \frac{d^2r(t)}{dt^2}+3\frac{dr(t)}{dt}+2r(t)=\frac{de(t)}{dt}+2e(t) dt2d2r(t)+3dtdr(t)+2r(t)=dtde(t)+2e(t)获得对应的齐次微分方程:
d 2 r ( t ) d t 2 + 3 d r ( t ) d t + 2 r ( t ) = 0 \frac{d^2r(t)}{dt^2}+3\frac{dr(t)}{dt}+2r(t)=0 dt2d2r(t)+3dtdr(t)+2r(t)=0
从而获得对应的特征方程,并求解出特征根:
特 征 方 程 : λ 2 + 3 λ + 2 = 0 特 征 根 : λ 1 = − 1 , λ 2 = − 2 特征方程:\lambda^2 + 3\lambda + 2 = 0 \\特征根:\lambda_1 = -1, \lambda_2 = -2 λ2+3λ+2=0λ1=1,λ2=2
进而得到微分方程的待定系数的通解 r h ( t ) r_h(t) rh(t)
r h ( t ) = C 1 e − t + C 2 e − 2 t , C 1 和 C 2 为 待 定 系 数 r_h(t) = C_1e^{-t}+C_2e^{-2t}, C_1和C_2为待定系数 rh(t)=C1et+C2e2t,C1C2
观察激励信号的形式, e ( t ) = t 2 e(t)=t^2 e(t)=t2,由此可得特解 r p ( t ) r_p(t) rp(t)的待定系数形式为:
r p ( t ) = A 2 t 2 + A 1 t + A 0 , A 2 , A 1 , A 0 为 待 定 系 数 r_p(t)=A_2t^2+A_1t+A_0,\\ A_2,A_1,A_0为待定系数 rp(t)=A2t2+A1t+A0,A2,A1,A0
将特解 r p ( t ) r_p(t) rp(t)和激励信号 e ( t ) = t 2 e(t)=t^2 e(t)=t2带入原微分方程 d 2 r ( t ) d t 2 + 3 d r ( t ) d t + 2 r ( t ) = d e ( t ) d t + 2 e ( t ) {\frac{d^2r(t)}{dt^2}+3\frac{dr(t)}{dt}+2r(t)=\frac{de(t)}{dt}+2e(t)} dt2d2r(t)+3dtdr(t)+2r(t)=dtde(t)+2e(t)中:
2 A 2 + 3 [ 2 A 2 t + A 1 ] + 2 [ A 2 t 2 + A 1 t + A 0 ] = 2 t + 2 t 2 整 理 得 : 2 A 2 t 2 + ( 6 A 2 + 2 A 1 ) t + ( 2 A 2 + 3 A 1 + 2 A 0 ) = 2 t + 2 t 2 2A_2+3[2A_2t+A_1]+2[A_2t^2+A_1t+A_0]=2t+2t^2 \\整理得:2A_2t^2+(6A_2+2A_1)t+(2A_2+3A_1+2A_0)=2t+2t^2 2A2+3[2A2t+A1]+2[A2t2+A1t+A0]=2t+2t22A2t2+(6A2+2A1)t+(2A2+3A1+2A0)=2t+2t2
对比方程左右两边的系数得:
2 A 2 = 2 ; 6 A 2 + 2 A 1 = 2 ; 2 A 2 + 3 A 1 + 2 A 0 = 0 ; 解 得 : A 2 = 1 ; A 1 = − 2 ; A 0 = 2 2A_2 = 2;\\6A_2+2A_1=2;\\2A_2+3A_1+2A_0=0;\\解得:A_2=1;A_1=-2;A_0=2 2A2=2;6A2+2A1=2;2A2+3A1+2A0=0;A2=1;A1=2;A0=2
由此的特解:
r p ( t ) = t 2 − 2 t + 2 , t ≥ 0 r_p(t)=t^2-2t+2, t\geq 0 rp(t)=t22t+2,t0
r h ( t ) = C 1 e − t + C 2 e − 2 t {r_h(t) = C_1e^{-t}+C_2e^{-2t}} rh(t)=C1et+C2e2t r p ( t ) = t 2 − 2 t + 2 , t ≥ 0 {r_p(t)=t^2-2t+2, t\geq 0} rp(t)=t22t+2,t0可得全响应:
r ( t ) = r p ( t ) + r h ( t ) = C 1 e − t + C 2 e − 2 t + t 2 − 2 t + 2 , t ≥ 0 r(t)= r_p(t)+r_h(t)=C_1e^{-t}+C_2e^{-2t}+t^2-2t+2,t\geq 0 r(t)=rp(t)+rh(t)=C1et+C2e2t+t22t+2,t0
将初始条件带入上式:
{ r ( 0 ) = C 1 + C 2 + 2 = 1 r ′ ( 0 ) = − C 1 − 2 C 2 − 2 = 1 ⇒ C 1 = 1 ; C 2 = − 2 \left\{ \begin{aligned} r(0)&=C_1+C_2+2 = 1 \\ r'(0)&=-C_1-2C_2-2=1 \\ \end{aligned} \right. \Rightarrow \begin{aligned} C_1&=&1; \\ C_2&=&-2 \\ \end{aligned} {r(0)r(0)=C1+C2+2=1=C12C22=1C1C2==1;2

所以全响应为:

r ( t ) = e − t − 2 e − 2 t + t 2 − 2 t + 2 , t ≥ 0 r(t)=e^{-t}-2e^{-2t}+t^2-2t+2,t\geq 0 r(t)=et2e2t+t22t+2,t0
由上总结,求解自然响应和受迫响应的基本思路是

  1. 获取微分方程的齐次形式,即将激励部分置零,求解特征方程,得到特征根。
  2. 利用特征根得到待定系数的方程形式通解,即自然响应
  3. 通过激励函数的形式,判断方程特解类型,得到待定系数的形式特解,即受迫响应
  4. 将待定系数的特解及激励信号带入微分方程,通过对比系数获得完整的特解。
  5. 将含有待定系数的通解和已求得的特解相加获得全响应,并将初始条件带入全响应中,解出剩余待定系数,获得完整的全响应。

通解通过特征方程求得,特征方程有时会出现重根的情况。

当特征方程出现__不出现重根__时,通解的形式如下所示:
r h ( t ) = A 1 e α 1 t + A 2 e α 2 t + ⋯ + A n e α n t = ∑ i = 1 n A i e α i t r_{h}(t)=A_{1} e^{\alpha_{1} t}+A_{2} e^{\alpha_{2} t}+\cdots+A_{n} e^{\alpha_{n} t}=\sum_{i=1}^{n} A_{i} e^{\alpha_{i} t} rh(t)=A1eα1t+A2eα2t++Aneαnt=i=1nAieαit
其中 A i A_i Ai是待定系数,需要通过初始条件决定。

当特征方程仅出现重根时,关于重根的通解的形式将稍有变化,如下所示:
r h ( t ) = ( B 1 t k − 1 + B 2 t k − 2 + ⋯ + B k − 1 t + B k ) ⋅ e α 1 t = ( ∑ j = 1 k B j t k − j ) e α 1 t r_{h}(t)=\left(B_{1} t^{k-1}+B_{2} t^{k-2}+\cdots+B_{k-1} t+B_{k}\right) \cdot e^{\alpha_{1} t}=\left(\sum_{j=1}^{k} B_{j} t^{k-j}\right) e^{\alpha_{1} t} rh(t)=(B1tk1+B2tk2++Bk1t+Bk)eα1t=(j=1kBjtkj)eα1t
其中 B j B_j Bj是待定系数,需要通过初始条件决定, α 1 \alpha_1 α1是k阶重根。

当特征方程不全是重根时,通解则为:
r h ( t ) = ( ∑ j = 1 k B j t k − j ) e α 1 t + ∑ i = k + 1 n A i e α i t r_{h}(t)=\left(\sum_{j=1}^{k} B_{j} t^{k-j}\right) e^{\alpha_{1} t}+\sum_{i=k+1}^{n} A_{i} e^{\alpha_{i} t} rh(t)=(j=1kBjtkj)eα1t+i=k+1nAieαit
比如下列方程:
d 3 d t 3 r ( t ) + 7 d 2 d t 2 r ( t ) + 16 d d t r ( t ) + 12 r ( t ) = e ( t ) \frac{d^3}{dt^3}r(t)+7\frac{d^2}{dt^2}r(t)+16\frac{d}{dt}r(t)+12r(t)=e(t) dt3d3r(t)+7dt2d2r(t)+16dtdr(t)+12r(t)=e(t)
其特征方程为:
λ 3 + 7 λ 2 + 16 λ + 12 = 0 \lambda^3+7\lambda^2+16\lambda+12=0 λ3+7λ2+16λ+12=0
求得特征根具有一个二阶重根:
λ 1 , 2 = − 2 , λ 3 = − 3 \begin{aligned} \lambda_{1,2}=-2,\lambda_3=-3 \end{aligned} λ1,2=2λ3=3
则通解的形式解为:
r h ( t ) = ( A 1 t + A 2 ) e − 2 t + A 3 e − 3 t r_h(t)=(A_1t+A_2)e^{-2t}+A_3e^{-3t} rh(t)=(A1t+A2)e2t+A3e3t

特解通过激励函数的形式获得,对于简单的激励函数常见的简单激励函数对应的特解形式如下

激励函数形式对应的待定系数的特解
E ( 常 数 ) E(常数) E B ( 常 数 ) B(常数) B()
t p t^p tp B 1 t p + B 2 t p − 1 + ⋅ ⋅ ⋅ + B p t + B p + 1 B_1t^p+B_2t^{p-1}+\cdot\cdot\cdot+B_pt+B_{p+1} B1tp+B2tp1++Bpt+Bp+1
e α t e^{\alpha t} eαt B e α t Be^{\alpha t} Beαt
cos ⁡ ( ω t ) \cos(\omega t) cos(ωt) B 1 cos ⁡ ( ω t ) + B 2 sin ⁡ ( ω t ) B_1\cos(\omega t)+B_2\sin(\omega t) B1cos(ωt)+B2sin(ωt)
sin ⁡ ( ω t ) \sin(\omega t) sin(ωt) B 1 cos ⁡ ( ω t ) + B 2 sin ⁡ ( ω t ) B_1\cos(\omega t)+B_2\sin(\omega t) B1cos(ωt)+B2sin(ωt)

经典法适用于激励信号形式简单的系统,比如指数信号 e α t e^{\alpha t} eαt等,因为在构建特解时相对容易。而面对复杂的激励信号,经典法对特解的求解相对困难。

3.2 卷积法

卷积法将要求得的响应分为两个部分:零输入响应和零状态响应,并对其分别求解。

零输入响应就是系统没有输入的情况下,由系统的初始状态引起的响应。零状态响应就是在没有初始储能的情况下,或者说零时刻之前置零的情况下,仅仅由输入引起的响应。

3.2.1 求解零输入响应之前,为了简便计算过程,首先引入微分算子

p = d d t p n = d n d t n 1 p = ∫ − ∞ t ( ) d τ p=\frac{d}{dt}\\p^n=\frac{d^n}{dt^n}\\\frac{1}{p}=\int_{-\infty}^t()d\tau p=dtdpn=dtndnp1=t()dτ

微分算子的运算法则:
m p + n p = ( m + n ) p p m p n = p m + n p 1 p = 1 \begin{aligned} &mp+np=(m+n)p\\ &p^mp^n=p^{m+n}\\ &p\frac{1}{p}=1 \end{aligned} mp+np=(m+n)ppmpn=pm+npp1=1
注意:

  1. 由于可能存在常数项,积分和微分的次序不可以改变,即 p 1 p = 1 p\frac{1}{p}=1 pp1=1成立,但是 1 p p = 1 \frac{1}{p}p=1 p1p=1不成立。
  2. 如果 p x ( t ) = p y ( t ) px(t)=py(t) px(t)=py(t),不一定 x ( t ) = y ( t ) x(t)=y(t) x(t)=y(t),只能得到 x ( t ) = y ( t ) + C x(t)=y(t)+C x(t)=y(t)+C,所以方程两边可以同乘以微分算子p,但不能除以微分算子p。

利用微分算子,下面系统构建的微分方程
a n d n d t n r ( t ) + a n − 1 d n − 1 d t n − 1 r ( t ) + . . . + a 1 d d t r ( t ) + a 0 r ( t ) = b m d m d t m e ( t ) + b m − 1 d m − 1 d t m − 1 e ( t ) + . . . + b 1 d d t e ( t ) + b 0 e ( t ) a_{n}\frac{d^{n}}{dt^{n}}r(t)+a_{n-1}\frac{d^{n-1}}{dt^{n-1}}r(t)+...+a_{1}\frac{d}{dt}r(t)+a_{0}r(t) =\\b_{m}\frac{d^{m}}{dt^{m}}e(t)+b_{m-1}\frac{d^{m-1}}{dt^{m-1}}e(t)+...+b_{1}\frac{d}{dt}e(t)+b_{0}e(t) andtndnr(t)+an1dtn1dn1r(t)+...+a1dtdr(t)+a0r(t)=bmdtmdme(t)+bm1dtm1dm1e(t)+...+b1dtde(t)+b0e(t)
可以表示为:
p n r ( t ) + a n − 1 p n − 1 r ( t ) + … + a 1 p r ( t ) + a 0 r ( t ) = b m p m e ( t ) + b m − 1 p m − 1 e ( t ) + … + b 1 p e ( t ) + b 0 e ( t ) \begin{array}{l} p^{n} r(t)+a_{n-1} p^{n-1} r(t)+\ldots+a_{1} p r(t)+a_{0} r(t)= \\ b_{m} p^{m} e(t)+b_{m-1} p^{m-1} e(t)+\ldots+b_{1} p e(t)+b_{0} e(t) \end{array} pnr(t)+an1pn1r(t)++a1pr(t)+a0r(t)=bmpme(t)+bm1pm1e(t)++b1pe(t)+b0e(t)
等式两边提取公因子 r ( t ) r(t) r(t) e ( t ) e(t) e(t),并化简得:
r ( t ) = ( b m p m + b m − 1 p m − 1 + … + b 1 p + b 0 ) ( p n + a n − 1 p n − 1 + … + a 1 p + a 0 ) e ( t ) r(t)=\frac{\left(b_{m} p^{m}+b_{m-1} p^{m-1}+\ldots+b_{1} p+b_{0}\right)}{\left(p^{n}+a_{n-1} p^{n-1}+\ldots+a_{1} p+a_{0}\right)} e(t) r(t)=(pn+an1pn1++a1p+a0)(bmpm+bm1pm1++b1p+b0)e(t)

这里定义:
H ( p ) = ( b m p m + b m − 1 p m − 1 + … + b 1 p + b 0 ) ( p n + a n − 1 p n − 1 + … + a 1 p + a 0 ) = N ( p ) D ( p ) r ( t ) = H ( p ) e ( t ) H(p)=\frac{\left(b_{m} p^{m}+b_{m-1} p^{m-1}+\ldots+b_{1} p+b_{0}\right)}{\left(p^{n}+a_{n-1} p^{n-1}+\ldots+a_{1} p+a_{0}\right)}=\frac{N(p)}{D(p)}\\r(t)=H(p)e(t) H(p)=(pn+an1pn1++a1p+a0)(bmpm+bm1pm1++b1p+b0)=D(p)N(p)r(t)=H(p)e(t)
其中 H ( p ) H(p) H(p)是系统函数,将在之后讨论。这的 N ( p ) N(p) N(p) D ( p ) D(p) D(p)代表上式的分子(Numerator)和分母(Denominator)。

应用微分算子,可以方便表示电容和电感的伏安特性:
u L = L ⋅ p ⋅ i L u C = 1 C ⋅ p ⋅ i C u_L=L \cdot p \cdot i_L \\ u_C=\frac{1}{C \cdot p} \cdot i_C uL=LpiLuC=Cp1iC

3.2.2 求解零输入响应 r z i ( t ) r_{zi}(t) rzi(t)

将零输入响应记为 r z i ( t ) r_{zi}(t) rzi(t),求解零输入响应的过程和上一节中的时域法相似,将输入激励信号置零。
a n d n d t n r z i ( t ) + a n − 1 d n − 1 d t n − 1 r z i ( t ) + . . . + a 1 d d t r z i ( t ) + a 0 r z i ( t ) = 0 a_{n}\frac{d^{n}}{dt^{n}}r_{zi}(t)+a_{n-1}\frac{d^{n-1}}{dt^{n-1}}r_{zi}(t)+...+a_{1}\frac{d}{dt}r_{zi}(t)+a_{0}r_{zi}(t) =0 andtndnrzi(t)+an1dtn1dn1rzi(t)+...+a1dtdrzi(t)+a0rzi(t)=0
其中初始条件,即为系统响应的初始条件。若记系统全响应为 r ( t ) r(t) r(t),则初始条件记为:(零状态响应的初始条件就是全响应的初始条件,注意 r ( t ) r(t) r(t) r z i ( t ) r_{zi}(t) rzi(t)角标的含义和区别)
r z i < n − 1 > ( 0 ) = r < n − 1 > ( 0 ) ; r z i < n − 2 > ( 0 ) = r < n − 2 > ( 0 ) ; . . . r z i ( 0 ) = r ( 0 ) ; r_{zi}^{<n-1>}(0)=r^{<n-1>}(0);\\r_{zi}^{<n-2>}(0)=r^{<n-2>}(0);\\...\\r_{zi}(0)=r(0); rzi<n1>(0)=r<n1>(0);rzi<n2>(0)=r<n2>(0);...rzi(0)=r(0);
其中 r z i < n − 1 > ( 0 ) r_{zi}^{<n-1>}(0) rzi<n1>(0)表示 n − 1 n-1 n1阶的零状态响应初始状态。

通过微分算子可以看出,零输入响应就是下列齐次方程的解:
D ( p ) r z i ( t ) = ( a n p n + a n − 1 p n − 1 + ⋯ + a 1 p + a 0 ) r z i ( t ) = 0 D(p)r_{zi}(t)=(a_np^n+a_{n-1}p^{n-1}+ \cdots + a_1p+a_0)r_{zi}(t)=0 D(p)rzi(t)=(anpn+an1pn1++a1p+a0)rzi(t)=0
其特征方程为:
a n λ n + a n − 1 λ n − 1 + ⋯ + a 1 λ + a 0 = 0 a_n \lambda ^n+a_{n-1}\lambda^{n-1}+ \cdots + a_1\lambda+a_0=0 anλn+an1λn1++a1λ+a0=0
求解齐次方程和经典法中的求解步骤一样,如求解下列RLC电路,其中 L = 1 H L=1H L=1H C = 1 F C=1F C=1F R = 2 Ω R=2\Omega R=2Ω,激励电压源 e ( t ) e(t) e(t)为零(这是零输入响应的条件),且初始条件为: i ( 0 ) = 0 , i ′ ( 0 ) = 1 A / s i(0)=0, i'(0)=1A/s i(0)=0,i(0)=1A/s,求零输入响应电流。

由KVL和电容和电容和电感的伏安特性 u L = L ⋅ p ⋅ i L ,   u C = 1 C ⋅ p ⋅ i C {u_L=L \cdot p \cdot i_L ,\space u_C=\frac{1}{C \cdot p} \cdot i_C} uL=LpiL, uC=Cp1iC可知:
u ( t ) = ( 1 C p + L p + R ) i z i ( t ) \begin{aligned} u(t)=(\frac{1}{Cp}+Lp+R)i_{zi}(t)\\ \end{aligned} u(t)=(Cp1+Lp+R)izi(t)
化简得:
i z i ( t ) = p L p 2 + p R + 1 C u ( t ) 即 : D ( p ) i z i ( t ) = ( L p 2 + p R + 1 C ) i z i ( t ) \begin{aligned} i_{zi}(t)=\frac{p}{Lp^2+pR+\frac{1}{C}}u(t)\\ 即: D(p)i_{zi}(t)=(Lp^2+pR+\frac{1}{C})i_{zi}(t) \end{aligned} izi(t)=Lp2+pR+C1pu(t)D(p)izi(t)=(Lp2+pR+C1)izi(t)
L = 1 H L=1H L=1H C = 1 F C=1F C=1F R = 2 Ω R=2\Omega R=2Ω代入方程,并得到特征方程,以及特征根:
λ 2 + 2 λ + 1 = 0 λ 1 , 2 = 1 \begin{aligned} \lambda^2+2\lambda+1=0\\ \lambda_{1,2}=1 \end{aligned} λ2+2λ+1=0λ1,2=1
这是一个重根解,由具有重根的形式通解 r h ( t ) = ( B 1 t k − 1 + B 2 t k − 2 + ⋯ + B k − 1 t + B k ) ⋅ e α 1 t {r_{h}(t)=\left(B_{1} t^{k-1}+B_{2} t^{k-2}+\cdots+B_{k-1} t+B_{k}\right) \cdot e^{\alpha_{1} t}} rh(t)=(B1tk1+B2tk2++Bk1t+Bk)eα1t可知,其待定系数的解为:
i z i ( t ) = C 1 e − t + C 2 t e − t i_{zi}(t)=C_1e^{-t}+C_2te^{-t} izi(t)=C1et+C2tet
将初始条件 i ( 0 ) = 0 , i ′ ( 0 ) = 1 A / s i(0)=0, i'(0)=1A/s i(0)=0,i(0)=1A/s带入得:
C 1 = 0 , C 2 = 1 C_1=0, C_2=1 C1=0,C2=1
所以零输入响应为:
i z i ( t ) = t e − t i_{zi}(t)=te^{-t} izi(t)=tet
由上述过程可见,求解零状态响应的经典法如下:

  1. 使用微分算子(或不使用)确定系统的特征方程,并求出特征根。
  2. 根据特征根确定零输入响应的形式解,注意有无重根的情况。
  3. 根据初始条件确定形式解中的系数。
3.2.3 求解零状态响应 r z s ( t ) r_{zs}(t) rzs(t)

将零状态响应记为 r z s ( t ) r_{zs}(t) rzs(t),零状态响应求解过程中要考虑激励信号,并且将初始条件置零。
a n d n d t n r z s ( t ) + a n − 1 d n − 1 d t n − 1 r z s ( t ) + . . . + a 1 d d t r z s ( t ) + a 0 r z s ( t ) = b m d m d t m e ( t ) + b m − 1 d m − 1 d t m − 1 e ( t ) + . . . + b 1 d d t e ( t ) + b 0 e ( t ) a_{n}\frac{d^{n}}{dt^{n}}r_{zs}(t)+a_{n-1}\frac{d^{n-1}}{dt^{n-1}}r_{zs}(t)+...+a_{1}\frac{d}{dt}r_{zs}(t)+a_{0}r_{zs}(t) =\\b_{m}\frac{d^{m}}{dt^{m}}e(t)+b_{m-1}\frac{d^{m-1}}{dt^{m-1}}e(t)+...+b_{1}\frac{d}{dt}e(t)+b_{0}e(t) andtndnrzs(t)+an1dtn1dn1rzs(t)+...+a1dtdrzs(t)+a0rzs(t)=bmdtmdme(t)+bm1dtm1dm1e(t)+...+b1dtde(t)+b0e(t)
其中初始条件为:
r z s < n − 1 > ( 0 ) = r z s < n − 2 > ( 0 ) = . . . = r 1 ( 0 ) = 0 r_{zs}^{<n-1>}(0)=r_{zs}^{<n-2>}(0)=...=r_1(0)=0 rzs<n1>(0)=rzs<n2>(0)=...=r1(0)=0

求解零状态响应,由于激励信号需要考虑在内进行计算,所以如果使用经典法,微分方程的特解很难确定,因此将使用卷积积分法进行求解。这部分内容请见下一贴内容——信号与系统(4)-连续时间系统的时域分析2

3.2.4 求解全响应

全响应 = 零输入响应 +零状态响应, 即:
r ( t ) = r z i ( t ) + r z s ( t ) r(t)=r_{zi}(t) + r_{zs}(t) r(t)=rzi(t)+rzs(t)

  • 这个解满足微分方程及其初始条件。

  • 零状态响应使用经典法则太过复杂。为了解决求解零状态响应的问题,引出卷积积分法求解。

  • 卷积积分法要求激励信号是一个有始信号,也就是说要求零时刻之前,信号为0,否则无法确定系统的初始状态。

问题:零输入响应和自然响应有什么关系?零状态响应、零输入响应、自然响应和受迫响应有什么联系?
1. 零输入响应和自然响应的关系?

零输入响应和自然响应的求解过程对比如下:

自然响应零输入响应
1. 根据微分方程列出特征方程1. 根据微分方程列出特征方程
2. 求特征根,并得到有待定系数的形式通解 r h ( t ) r_h(t) rh(t)2. 求特征根并得到有待定系数的形式通解
3. 根据激励信号形式确定有待定系数的形式特解 r p ( t ) r_p(t) rp(t)3. 激励信号置零,因此无需求特解
4. 将特解带入微分方程,通过系数对比确定完整特解4. 将全响应的初始条件 r < n − 1 > ( 0 ) r^{<n-1>}(0) r<n1>(0)作为零输入响应 r z i < n − 1 > ( 0 ) r_{zi}^{<n-1>}(0) rzi<n1>(0)的初始条件,即 r z i < n − 1 > ( 0 ) = r < n − 1 > ( 0 ) r_{zi}^{<n-1>}(0)=r^{<n-1>}(0) rzi<n1>(0)=r<n1>(0),带入到形式通解中求得系数。
5. 将初始条件带入全响应 r h ( t ) + r p ( t ) r_h(t)+r_p(t) rh(t)+rp(t)求得剩余系数所求的完整通解就是零输入响应。
全响应的 r h ( t ) r_h(t) rh(t)就是自然响应

结合之前的举例和上述对比可以看出:

首先在数学计算上求通解系数时不同。零输入响应和自然响应在数学求解过程上均是求解线性齐次微分方程的通解,但是求解自然响应时,需要将具有待定系数的全响应求出后,带入微分方程,再使用初始条件进行系数待定,或先求出具有待定系数的通解和待定系数的特解,并将特解带入微分方程中,通过对比系数确定完整的特解,再将具有待定系数通解的全响应带入方程,通过初始条件确定剩余的系数。而零输入响应则使用初始条件,仅仅并直接对通解进行了待定系数,没有特解部分

其次在物理含义上不同。零输入响应是指输入为零,依靠系统在零时刻的自身储能,也就是初始条件产生的响应。而自然响应,是无关外界激励信号,由系统自身特点决定的响应。

两者的联系是零输入响应仅仅是自然响应的一部分,自然响应的另一部分包含在零状态响应中

2. 零状态响应、零输入响应、自然响应和受迫响应有什么区别和联系?

零输入响应是自然响应的一部分,而受迫响应是零状态响应的一部分。零状态响应包含了一部分自然响应和全部的受迫响应。

即:

拙劣之见,希望大家批评指正,谢谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值