之前一直对object_detection训练的模型检测速度不满意,想玩玩yolov3。没想到一拖到如今,v4v5都出来了。但还是蛮庆幸当时没碰v3,因为这个v5比起v3使用起来实在是友好太多,训练和检测速度快,精度高,模型还小,能节省好多时间。
确实牛
刚接触yolo时还是v3,现在转眼间已经是v11了。这个笔记系列当初是在v5的基础上写的,最近想着趁v11出来了更新一下。从官方给的性能图来看v10和v11大概是走到此类任务的天花板了,未来几年目标检测的任务可能不会再有很巨大的提升。
1. 安装pytorch
1.1 创建新的环境
打开命令行输入
创建一个新环境,并激活进入环境。
# 创建了名叫pytorch的,python版本为3.10的新环境
conda create -n pytorch python=3.10
# 激活名叫pytorch的环境
conda activate pytorch
1.2 下载pytorch
打开pytorch的官网https://pytorch.org/
下拉找到QUICK START LOCALLY
我个人是选择了pytorch2.4.1的版本、win系统、conda包、python语言、12.1 CUDA
没有gpu的cuda就选CPU
mac系统默认
选完了后,在“Run this Command:”这一栏就会出现对应的命令行,复制到我们的环境中运行即可
换源
网速很好的跳过换源这一步!!!
在这里应该会出现无法下载的情况,是因为用的是境外的网址,我们要通过境内的镜像网站去下载。
!!!用conda下载的看下面:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/# 这个下载pytorch必须要有
建议不要嫌多把上面的镜像网址都加上去,然后再用下面的命令代码确认
conda config --set show_channel_urls yes
然后修改那行下载命令
conda install pytorch torchvision torchaudio cudatoolkit=12.1 -c pytorch -c conda-forge
# 将上面这一行代码修改为下面这一行
conda install pytorch torchvision torchaudio cudatoolkit=12.1
conda
中的-c
就相当于pip
中的-i
,都代表指定下载源,所以我们要去掉,这样才是使用我们上面添加的国内镜像源。
!!!用pip下载的看下面:
pip3 install torch torchvision torchaudio -i https://pypi.tuna.tsinghua.edu.cn/simple
如果因为网络问题没安装成功那就多试几次。
验证
启动python,导入pytorch库
# 启动
python
#输入库
import torch
查看pytorch的版本和gpu是否可用
#查看版本
print(torch.__version__)
#查看gpu是否可用
torch.cuda.is_available()
#返回设备gpu个数
torch.cuda.device_count()
#Apple设备Metal是否可用
torch.backends.mps.is_available()
一切正常的话,GPU版的pytorch就安装成功了
安装Ultralytics
pip install ultralytics
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple #网络不好的话
安装完成后使用命令
yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
这样就使用yolo11n模型来预测bus.jpg这张图。
他会在你运行命令的文件里下载bus.jpg和yolo11n.pt,还有生成runs文件夹(储存结果的文件夹)
如果报下图这个错误的就是程序没有自动去这个网址https://github.com/ultralytics/assets/releases下载这个文件
yolo11笔记(1)——安装pytorch与 Ultralytics(win/Mac/linux三平台)
yolo11笔记(2)——训练自己的数据模型
yolo11笔记(3)——移动端部署自己的模型(GPU_cuda系列)
yolov5笔记(4)——CPU部署以及NCNN