数字图像基础
图像内插
在图像进行放大、缩小、旋转、几何校正的操作中,新图像的某些像素点会有缺失,所以利用插值,将这些缺失的点进行填充。 ^0kqiip
最近邻内插
方法:把距离像素缺失点最近的像素点的值填充进去
优点:计算量小
缺点:容易产生影像的块状效应,导致图像过渡会有锯齿状
双线性内插
方法:使用新位置最近邻4个灰度去估计其灰度值
v
(
x
,
y
)
=
a
x
+
b
y
+
c
x
y
+
d
v(x, y) = ax+by+cxy+d
v(x,y)=ax+by+cxy+d4个系数可以由4个用(x,y)点最近邻点写出的未知方程确定。
优点:常用,过渡较平滑
缺点:计算量相对最近邻内插较大
双三次内插
方法:使用新位置最近邻4个灰度去估计其灰度值
v
(
x
,
y
)
=
∑
i
=
0
3
∑
j
=
0
3
a
i
j
x
i
y
j
v(x, y)=\sum_{i=0}^3\sum_{j=0}^3a_{ij}x^iy^j
v(x,y)=i=0∑3j=0∑3aijxiyj
16个系数可由16个用(x,y)点最邻近点写出的未知方程确定。如果求和上下限分别为0和1。通常,双三次内插在保持细节方面比双线性内插相对要好。双三次内插是商业图像编辑程序的标准内插方法,例如Adobe Photoshop。
优点:在保留细节方面强于双线性内插。不仅考虑到4 个直接相邻点的灰度影响,而且考虑到各邻点间灰度值变化率的影响。
算术运算
图像相加
方法:两幅图像对应像素的灰度值或彩色分量进行相加。
用途:
-
消除图像的随机噪声,将同一场景的图像进行相加后再取平均;
-
做特效,把多幅图像叠加在一起,再进一步进行处理。
图像相减
用途:
- 医学造影方面有着非常重要的作用,比如数字减影血管造影:先拍摄一张血管造影做模板f(x,y),再注射介质拍摄活体图像h(x,y),两者相减后就得到了血管结构的造影g(x,y):
- 用于目标识别中,而天文摄影中也需要拍摄暗场、暗平场便于后期处理时减法降噪,应用面还是很广泛的。
图像乘除
用途:
-
校正阴影,传感器给出的图像g(x,y)从光影角度来看可以是完美图像f(x,y)和阴影函数s(x,y)的乘积 。 g ( x , y ) = f ( x , y ) s ( x , y ) g(x,y)=f(x,y)s(x,y) g(x,y)=f(x,y)s(x,y)
- 如果阴影函数已知,利用反函数g(x,y)/h(x,y)即可得到f(x,y)。
- 大多数时候阴影函数都是未知的,如果图像系统可以访问,就能通过对具有恒定灰度的目标成像,模拟一个近似的阴影函数。如果图像系统不能访问,就只能直接从g(x,y)里估计阴影函数,准确度就要视具体情况而定了。
-
提取ROI区域。将兴趣区域以设置为模板图像后,与给定的图像相乘,模板区域为1,其他为0,就能得到给定图像中模板区域的独立成像。
仿射变换
- 图像的几何变换主要分为三类:刚性变换、仿射变换和透视变换。
放射变换表
- 一般图像进行放射变换后需使用图像内插进行像素灰度填补。
图像配准
- 定义:
图像配准目的在于比较或融合针对同一对象在不同条件下获取的图像,例如图像会来自不同的采集设备,取自不同的时间,不同的拍摄视角等等,有时也需要用到针对不同对象的图像配准问题。
具体地说,对于一组图像数据集中的两幅图像,通过寻找一种空间变换把一幅图像映射到另一幅图像,使得两图中对应于空间同一位置的点一一对应起来,从而达到信息融合的目的。
方法:
-
双线性近似建模 f ( x ) = { x = c 1 v + c 2 w + c 3 v w + c 4 y = c 5 v + c 6 w + c 7 v w + c 8 f(x)=\left\{ \begin{aligned} x=c_1v+c_2w+c_3vw+c_4 \\ y=c_5v+c_6w+c_7vw+c_8\end{aligned} \right. f(x)={x=c1v+c2w+c3vw+c4y=c5v+c6w+c7vw+c8
- 方法一:在图片上定4个约束点,代入公式中,即可求得8个参数,得到对应像素之间的空间映射关系
缺点:精度低,结果不一定让人满意。 - 方法二:选择大量的约束点,每4个约束点形成的四边形作为子图像分别进行配准,直至所有的四边形区域全部都处理完成。
- 方法一:在图片上定4个约束点,代入公式中,即可求得8个参数,得到对应像素之间的空间映射关系
-
注意:图像畸变可能会对配准的结果产生影响。