云服务器上安装MMDetection及训练自己的数据集-方法总结

本文详细介绍了如何在云服务器上安装mmcv和mmdetection,包括使用清华源安装依赖、从码云下载代码、安装mmcv-full以及mmdetection的编译。此外,还讲解了训练自定义VOC数据集的步骤,包括创建目录、修改config.py、voc.py和class_names.py,以及训练和查看日志的过程。
摘要由CSDN通过智能技术生成

1.安装mmcv和mmdetection

第一步:使用清华源来安装pytorch、torchvision和cython

直接安装pytorch和torchvision,命令如下:

install pytorch torchvision cudatoolkit=10.0
install cython

这一步由于我使用的是云服务器,机器已经把基础环境配置好了,我用的版本是:
pytorch1.6.0
CUDA10.2
python 3.6
登陆工具为XFTP,Xshell
注意:版本一定要对应(包括后续安装),避免安装过程中各种莫名其妙的错误!!!

第二步:git下载mmcv和mmdetection:

从github上下载mmcv和mmdetection,可能会导致超时或过慢:(不建议)

git clone https://github.com/open-mmlab/mmcv.git
git clone https://github.com/open-mmlab/mmdetection.git
1.从码云上下载mmcv和mmdetection的代码到云主机,命令如下:(建议使用
git clone https://gitee.com/mirrors/mmcv.git
git clone https://gitee.com/mirrors/mmdetection.git
2.确保一些必要的包已经安装:

不要提前安装pycocotools!!!因为mmdetection是使用的自己开发的pycocotools,当系统中已经安装了此包的时候,mmdetection不会覆盖安装,会导致后面安装失败!!(找了好久才解决)

pip install pytest-runner 
pip install pytest 
pip install addict
pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install pyyaml
pip install yaps   #这个很可能需要安装
pip install matplotlib  terminaltables   imagecorruptions  albumentations
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple matplotlib==3.3.1
3.安装mmcv-full

mmcv-full为GPU版本,mmcv为CPU版本,官方提示两者不可同时安装。

pip install mmcv-full==1.2.4 -f https://download.openmmlab.com/mmcv/dist/cu102/
### 如何使用 mmdetection 框架训练自定义数据集 #### 安装依赖环境 为了能够顺利运行 mmdetection,需要先配置好 Python 环境并安装必要的库。这通常涉及到 CUDA 和 cuDNN 的版本匹配以及 PyTorch 版本的选择。对于具体的安装指南可以参照详细的安装教程[^1]。 #### 数据准备 当处理 VOC 格式的自定义数据集时,需按照特定结构组织文件夹,并转换标注文件至 COCO JSON 格式以便于被 mmdetection 所读取。创建相应的 XML 文件用于描述图像中的对象位置及其类别标签。之后通过脚本将这些 XML 转换成单个 JSON 文件作为输入给定到 `mmdet/datasets/voc.py` 中指定的位置。 #### 修改配置文件 针对个人需求定制化检测任务之前,应该编辑位于 `configs/` 下面的相关配置文档来适应新的数据源特性。特别是要调整如下几个方面: - **backbone**: 如果有特别的需求可以选择不同的骨干网络; - **dataset type and path**: 更改数据集类型为 PascalVOC 并设置正确的路径指向本地存储的图片与注解资料; - **classes of interest**: 明确指出希望识别的目标分类列表; 这部分操作可以在 `mmdet/datasets/coco.py` 或者其他对应的数据加载器里完成修改[^2]。 #### 训练模型 一旦完成了上述准备工作,则可以通过命令行启动训练进程。一般情况下会采用预训练权重来进行迁移学习以加快收敛速度和提高性能表现。具体做法是在配置文件中指明下载官方提供的 checkpoint 来初始化参数[^3]。 ```bash python tools/train.py configs/my_custom_config.py --work-dir work_dirs/custom/ ``` 此命令将会依据所选配置执行完整的训练流程并将中间结果保存在指定的工作目录下供后续评估分析之用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值