RNN原理介绍

本文详细介绍了RNN的工作原理,对比了RNN与HMM的区别,指出RNN在处理序列数据时面临的梯度消失问题,并引出了LSTM的解决方案。此外,还提及了GRU,一种结构简洁但效果接近RNN的模型,广泛应用于看图说话、文本分类等任务。
摘要由CSDN通过智能技术生成

RNN介绍:

RNN与HMM的区别:

主要是隐状态,HMM相当于是onehot编码,每个观测状态是由某一个隐状态决定的,其他都为0.属于局部最优解,稀疏。

而RNN的隐状态相当于词向量表示(分布式表示),每个观测状态是由好多隐状态作用生成的,密集。 

递归神经网络适合语言模型,因为后边的输出会受前边输入的影响,所以一个句子后边的词的生成是联合概率。但存在的问题是

梯度消失,随着句子加长,生成后边的词时,越远的词的作用会越来越小,所以有了LSTM。

每一个时间点的输出都是一个长度为V(词典里词个数)的向量,通过交叉熵损失函数计算出每个输出词的损失,然后再累加作为损失函数,优化这个损失函数得到训练参数。

RNN的问题是梯度消失与爆炸。

梯度爆炸容易解决:设置一个阈值,当结果大于这个值时,将其减小。

梯度消失不好解决&#x

### 回答1: RNN(递归神经网络)是一种常用的深度学习技术,它具有记忆功能,能够学习序列数据中的规律和模式。RNN的基本原理是,它以一种“循环”的方式来处理序列数据,它可以从输入序列中抽取相应的特征,然后再根据这些特征输出预测结果。RNN的运行过程主要包括:输入层、隐藏层和输出层。输入层用于获取输入序列的特征,而隐藏层以某种形式学习从输入序列中获取的特征,并将它们组合成一个新的特征向量,这个特征向量称为“状态”。最后,输出层利用这个特征向量来获得最终的预测结果。RNN还可以通过多种方式来提升训练的准确度,其中最常用的方法是“长短期记忆”(LSTM)和“门控循环单元”(GRU)。这两种方法都可以用来解决训练中的梯度消失问题,从而提高训练的准确度。总之,RNN可以让深度学习模型更加准确,更加有效地处理序列数据。 ### 回答2: RNN(循环神经网络)是一种常用于处理序列数据的神经网络模型。相较于传统的前馈神经网络,RNN在处理序列数据时具有记忆功能,能够利用之前的信息来影响后续的预测。 RNN基本原理是通过引入循环结构来处理序列数据。它的每一个时间步都接收一个输入向量,同时还接收一个来自上一时间步的隐藏状态(hidden state)。隐藏状态可以理解为神经网络的记忆,它会持续地被更新和传递。 在RNN中,一个时间步的计算可以分为三个步骤:输入层到隐藏层的计算、隐藏层之间的传递、隐藏层到输出层的计算。 首先,输入向量和上一时间步的隐藏状态作为输入,通过一个权重矩阵进行线性变换,并经过激活函数得到隐藏层的输出。 其次,当前时间步的隐藏层输出会与一个新的隐藏状态相结合,用于传递到下一时间步。隐藏层之间的传递可以保证之前的信息在序列中传递。 最后,隐藏层的输出通过另一个权重矩阵进行线性变换,并再次经过激活函数得到最终的输出。 RNN的训练过程主要涉及到权重矩阵的更新。通常使用反向传播算法来计算损失函数对于参数的梯度,然后使用梯度下降算法来更新权重矩阵。 然而,传统的RNN在处理长序列时存在梯度消失和梯度爆炸的问题,即随着时间步的增加,梯度会呈指数级地增大或减小。为了解决这些问题,人们提出了改进的RNN模型,如LSTM(长短期记忆网络)和GRU(门控循环单元)。 LSTM和GRU通过引入门控机制来控制信息的流动,从而解决了长序列时的梯度问题。这些门控机制可以过滤掉不重要的信息,只保留对当前任务有用的信息。 总之,RNN是一种适用于处理序列数据的神经网络模型。它通过循环结构和隐藏状态的传递,能够利用之前的信息对后续的预测产生影响。然而,传统的RNN存在着梯度消失和梯度爆炸的问题,因此改进的RNN模型如LSTM和GRU被提出来以解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值