【B站学习笔记】2. 数据分析理论+实战(产品、运营必修课)

9种数据分析方法

在这里插入图片描述

对比分析

1. 比什么?

  • 绝对值:销售金额、阅读数——不易得知问题的严重程度

  • 比例值:活跃占比、注册转化率——易受到极端值影响

2. 怎么比?

  • 环比(last period) :一环扣一环

    • 与当前时间范围相邻的上一个时间范围的对比

    • 短期内具备连续性的数据进行分析

    • 需要根据相邻时间范围的数字对当前时间范围的指标进行设定

    • 日环比(今天VS昨天)

    • 月环比(本月VS上月)

  • 同比(same period of last year/month/day)

    • 与当前时间范围上层时间范围的前一范围中同样位置数据对比

    • 观察更为长期的数据集

    • 观察的时间周期里有较多干扰,希望某种程度上消除这些干扰(周末和工作日,暑假月和上学月)

    • 月同比 (9月7号和8月7号比)

    • 年同比(今天VS去年今日)

    • 周同比(今天VS上周同日)

3. 和谁比?

  • 和自己比

    • 从时间维度——较为连续的数值
    • 从不同业务线(语文辅导数下降,和数学、物理等其他业务线对比来发现问题)
    • 从过往经验估计(问卷调查 根据经验有50%回收率)
  • 和行业比

    • 是自身因素?还是行业趋势?

      • 都跌,能否比同行跌得少?

      • 都涨,是否比同行涨的慢?

【最重要】🌟多维度拆解

  • 用不同的视角拆分、观察同一个数据指标

  • 适用场景
    在这里插入图片描述

  • 案例:对「APP启动事件」的分析

    • 将用户按照设备类型、启动来源、城市等级、新老用户查看
  • 案例:对「支付流程(注册—下单—支付)」的分析

    • 将支付漏斗按照渠道、城市、设备等分析
  • 案例:打赏主播的行为发生的场景

    • 按照主播等级、性别,按照打赏人所处流量环境

数据涨跌异动如何处理

  • 跌:采取措施,减缓趋势
  • 涨:弄清原因,放大
    在这里插入图片描述

数据涨跌原因的常见假设

  • 活动影响:是否有活动,活动页面的PV、UV或者完成的动作是否变化,是否有地域属性

  • 版本发布

  • 渠道投放

  • 策略调整 :推荐策略、搜索策略、补贴策略、运营策略改变,是有时间节点的,拆成小时甚至分钟级别

  • 服务故障

    在这里插入图片描述

维度拆解分析是可以叠加的

  • 案例:Web网页浏览量狂涨

    • 按照浏览量来源拆分,发现未知来源;

    • 异常用户按照地域划分,全来自北京;

    • 按照浏览器拆分,大部分来自safari;

    • 按浏览器版本拆解,safari用户无版本信息

—>爬虫爬了

漏斗观察

漏斗观察:一连串向后影响的用户行为

适用有明确的业务流程和业务目标

  • 坑:

      1. 漏斗一定有时间窗口 ✘
      • 根据实际情况,选择对应的时间窗口

      • 按天(短期活动)、周(业务本身复杂/决策成本高/多日才能完成等 理财/美股开户)、月(决策周期更长 装修买房)

      • 时间窗口太长:包进太多无关信息

      • 太短:扔掉很多有用信息

      1. 漏斗一定有严格顺序 ✘
      • 不可以用「ABCDE」漏斗,看「ACE」的数据,不可只关心首尾
        在这里插入图片描述
      1. 漏斗的计数单位可以基于「用户」,也可以基于「事件」✘
        在这里插入图片描述
      • 何时基于「用户」

        • 关心整个业务流程的推动
      • 何时基于「事件」

        • 关心某一步具体的转化率
        • 【坑】无法获知事件流转的真实情况
      1. 结果指标的数据不符合预期 ✘
      • 自查:是否只有这一个漏斗能到达最终目标?

案例:如何评估渠道质量,确定投放优先级

  • 常见渠道划分方法

    • 按来源(source): 百度、头条、线下…

    • 按媒介(medium): SEM、自然搜索结果、Banner…

    • 按其他参数:营销活动名称、广告关键词…

  • 渠道质量跟踪

    • 选择关键事件——选取反映产品目标人群会做的行为的数据
      • 购买(电商)、发帖(社区)
      • 门槛不可太高(完成3个月课程)或太低(打开APP)
    • 查看产生关键事件的用户来源

分布情况

一个事件不仅只有累计数量这么一个可以观察的指标,还可以从该事件在不同维度中的分布来观察。

  • 常见的群体划分:

    • 事件频率(视频软件,观看次数PV58万,观看人数UV30万,0~5次的人数、6~10次的人数…)
    • 一天内的时间分布
    • 消费金额的区间

在这里插入图片描述

用户留存

在这里插入图片描述
在这里插入图片描述

【案例】功能/内容上线后,如何评估短期效果/长期价值/未来潜力?

  • 上线后的目标与价值清晰明确

    • 借助漏斗分析对比(转化关系明确)

    • 借助用户分群对比(转化关系较复杂)

  • 上线后关注其对产品价值的提升
    因为这一功能/内容留在平台(而非这一功能/内容自身)的情况

    • 借助精准留存对比
  • 上线以探索更长期的产品潜力

    • 从对使用情况的促进作用来观察

    • 从占据用户一日时间段的角度来观察

    • 借助分布情况分析,对比产品核心功能使用频次的分布;使用场景(如时间段)的分布

用户画像

用户画像——高质量拉新、精准运营推送、辅助产品设计

Profile vs Persona

  • 通过对用户的各类特征进行标识,给用户贴上各类标签,将用户分为不同群体进行产品/运营动作

  • 标签都有啥
    在这里插入图片描述

  • 标签从哪来?

    • 直接填写 (注册时、兴趣标签、外卖快递地址、装修计算器)

    • 通过用户自己的已有特征推得

      • 何时需要?
        • 做活动

        • 简单的个性化运营

        • 业务分析

        • 用户研究(准备)

    • 通过用户身边的人推断

      • 距离相近:某些属性,周围的人具备,用户大概率也具备

      • 行为相似:通过协调过滤,找到行为相似的目标用户

  • 适用场景

    • 市场营销、个性化运营、业务分析…

【案例】如何高质量拉新?

找到「真正的用户」
找到「真正的用户」的特征
按此特征,找到类似的用户
在这里插入图片描述

归因查找

原理:将事件拆解,并根据业务性质,确定影响事件完成的关键部分

  • 末次归因:转化路径短,事件间关联性强
    将贡献度给最后一个行为

  • 递减归因:转化路径长,非目标事件差异不大,没有完全主导的
    在这里插入图片描述

  • 首次归因:强流量依赖的业务场景,拉人比后续所有事都重要
    在这里插入图片描述
    在这里插入图片描述

【案例】如何精准运营推送?

精准运营

  • 运营资源盘活

    • 不同人在同一个运营资源位上得到不同的信息
      精细化的用户分群运营
    • 需要在“千人一面”和“千人千面”之间找到ROI的平衡
      在这里插入图片描述
  • 如何选择最初的七八个标签?

    在这里插入图片描述

  • 推送内容与用户「有关」

    在这里插入图片描述

路径挖掘

  • 原理:逐级展开某一事件的前一级(后一级)事件,观察其流向

  • 适用场景:

    • 有明确的起始场景,向后观察发生了什么
    • 有明确的结果目标,向前观察来的用户是如何到达的
  • 局限:无法观察具体的个体的行为

行为序列

  • 运作原理:将单一用户的所有行为以时间线形式排列

  • 适用场景:观察具体的行为特征…

【案例】如何辅助产品设计?

辅助产品设计决策

    • 用户画像 (年龄、学历水平)
  • 在什么情况下
    • 行为序列的属性
  • 干什么&遇到什么问题
    • 行为序列 or 屏幕录像

不要套数据!

【案例】羊毛党盛行,快速查出是谁在薅羊毛 / 查找恶意用户 / 抓作弊

在这里插入图片描述

在这里插入图片描述

  • 找到其目的
    • 刷量
    • 薅羊毛
    • spam

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值