9种数据分析方法
对比分析
1. 比什么?
-
绝对值:销售金额、阅读数——不易得知问题的严重程度
-
比例值:活跃占比、注册转化率——易受到极端值影响
2. 怎么比?
-
环比(last period) :一环扣一环
-
与当前时间范围相邻的上一个时间范围的对比
-
对短期内具备连续性的数据进行分析
-
需要根据相邻时间范围的数字对当前时间范围的指标进行设定
-
日环比(今天VS昨天)
-
月环比(本月VS上月)
-
-
同比(same period of last year/month/day)
-
与当前时间范围上层时间范围的前一范围中同样位置数据对比
-
观察更为长期的数据集
-
观察的时间周期里有较多干扰,希望某种程度上消除这些干扰(周末和工作日,暑假月和上学月)
-
月同比 (9月7号和8月7号比)
-
年同比(今天VS去年今日)
-
周同比(今天VS上周同日)
-
3. 和谁比?
-
和自己比
- 从时间维度——较为连续的数值
- 从不同业务线(语文辅导数下降,和数学、物理等其他业务线对比来发现问题)
- 从过往经验估计(问卷调查 根据经验有50%回收率)
-
和行业比
-
是自身因素?还是行业趋势?
-
都跌,能否比同行跌得少?
-
都涨,是否比同行涨的慢?
-
-
【最重要】🌟多维度拆解
-
用不同的视角拆分、观察同一个数据指标
-
适用场景
-
案例:对「APP启动事件」的分析
- 将用户按照设备类型、启动来源、城市等级、新老用户查看
-
案例:对「支付流程(注册—下单—支付)」的分析
- 将支付漏斗按照渠道、城市、设备等分析
-
案例:打赏主播的行为发生的场景
- 按照主播等级、性别,按照打赏人所处流量环境
数据涨跌异动如何处理
- 跌:采取措施,减缓趋势
- 涨:弄清原因,放大
数据涨跌原因的常见假设
-
活动影响:是否有活动,活动页面的PV、UV或者完成的动作是否变化,是否有地域属性
-
版本发布
-
渠道投放
-
策略调整 :推荐策略、搜索策略、补贴策略、运营策略改变,是有时间节点的,拆成小时甚至分钟级别
-
服务故障
维度拆解分析是可以叠加的
-
案例:Web网页浏览量狂涨
-
按照浏览量来源拆分,发现未知来源;
-
异常用户按照地域划分,全来自北京;
-
按照浏览器拆分,大部分来自safari;
-
按浏览器版本拆解,safari用户无版本信息
-
—>爬虫爬了
漏斗观察
漏斗观察:一连串向后影响的用户行为
适用有明确的业务流程和业务目标
-
坑:
-
- 漏斗一定有时间窗口 ✘
-
根据实际情况,选择对应的时间窗口
-
按天(短期活动)、周(业务本身复杂/决策成本高/多日才能完成等 理财/美股开户)、月(决策周期更长 装修买房)
-
时间窗口太长:包进太多无关信息
-
太短:扔掉很多有用信息
-
- 漏斗一定有严格顺序 ✘
- 不可以用「ABCDE」漏斗,看「ACE」的数据,不可只关心首尾
-
- 漏斗的计数单位可以基于「用户」,也可以基于「事件」✘
-
何时基于「用户」
- 关心整个业务流程的推动
-
何时基于「事件」
- 关心某一步具体的转化率
- 【坑】无法获知事件流转的真实情况
- 漏斗的计数单位可以基于「用户」,也可以基于「事件」✘
-
- 结果指标的数据不符合预期 ✘
- 自查:是否只有这一个漏斗能到达最终目标?
-
案例:如何评估渠道质量,确定投放优先级
-
常见渠道划分方法
-
按来源(source): 百度、头条、线下…
-
按媒介(medium): SEM、自然搜索结果、Banner…
-
按其他参数:营销活动名称、广告关键词…
-
-
渠道质量跟踪
- 选择关键事件——选取反映产品目标人群会做的行为的数据
- 购买(电商)、发帖(社区)
- 门槛不可太高(完成3个月课程)或太低(打开APP)
- 查看产生关键事件的用户来源
- 选择关键事件——选取反映产品目标人群会做的行为的数据
分布情况
一个事件不仅只有累计数量这么一个可以观察的指标,还可以从该事件在不同维度中的分布来观察。
-
常见的群体划分:
- 事件频率(视频软件,观看次数PV58万,观看人数UV30万,0~5次的人数、6~10次的人数…)
- 一天内的时间分布
- 消费金额的区间
用户留存
【案例】功能/内容上线后,如何评估短期效果/长期价值/未来潜力?
-
上线后的目标与价值清晰明确
-
借助漏斗分析对比(转化关系明确)
-
借助用户分群对比(转化关系较复杂)
-
-
上线后关注其对产品价值的提升
因为这一功能/内容留在平台(而非这一功能/内容自身)的情况- 借助精准留存对比
-
上线以探索更长期的产品潜力
-
从对使用情况的促进作用来观察
-
从占据用户一日时间段的角度来观察
-
借助分布情况分析,对比产品核心功能使用频次的分布;使用场景(如时间段)的分布
-
用户画像
用户画像——高质量拉新、精准运营推送、辅助产品设计
Profile vs Persona
-
通过对用户的各类特征进行标识,给用户贴上各类标签,将用户分为不同群体进行产品/运营动作
-
标签都有啥
-
标签从哪来?
-
直接填写 (注册时、兴趣标签、外卖快递地址、装修计算器)
-
通过用户自己的已有特征推得
- 何时需要?
-
做活动
-
简单的个性化运营
-
业务分析
-
用户研究(准备)
-
- 何时需要?
-
通过用户身边的人推断
-
距离相近:某些属性,周围的人具备,用户大概率也具备
-
行为相似:通过协调过滤,找到行为相似的目标用户
-
-
-
适用场景
- 市场营销、个性化运营、业务分析…
【案例】如何高质量拉新?
找到「真正的用户」
找到「真正的用户」的特征
按此特征,找到类似的用户
归因查找
原理:将事件拆解,并根据业务性质,确定影响事件完成的关键部分
-
末次归因:转化路径短,事件间关联性强
将贡献度给最后一个行为 -
递减归因:转化路径长,非目标事件差异不大,没有完全主导的
-
首次归因:强流量依赖的业务场景,拉人比后续所有事都重要
【案例】如何精准运营推送?
精准运营
-
运营资源盘活
- 不同人在同一个运营资源位上得到不同的信息
精细化的用户分群运营 - 需要在“千人一面”和“千人千面”之间找到ROI的平衡
- 不同人在同一个运营资源位上得到不同的信息
-
如何选择最初的七八个标签?
-
推送内容与用户「有关」
路径挖掘
-
原理:逐级展开某一事件的前一级(后一级)事件,观察其流向
-
适用场景:
- 有明确的起始场景,向后观察发生了什么
- 有明确的结果目标,向前观察来的用户是如何到达的
-
局限:无法观察具体的个体的行为
行为序列
-
运作原理:将单一用户的所有行为以时间线形式排列
-
适用场景:观察具体的行为特征…
【案例】如何辅助产品设计?
辅助产品设计决策
- 谁
- 用户画像 (年龄、学历水平)
- 在什么情况下
- 行为序列的属性
- 干什么&遇到什么问题
- 行为序列 or 屏幕录像
不要套数据!
【案例】羊毛党盛行,快速查出是谁在薅羊毛 / 查找恶意用户 / 抓作弊
- 找到其目的
- 刷量
- 薅羊毛
- spam