ACCELERATING DIFFUSION MODELS VIA PRE-SEGMENTATION DIFFUSIONSAMPLING FOR MEDICAL IMAGE SEGMENTATION

文章介绍了一种名为PD-DDPM的方法,通过预先训练的分割网络和非高斯噪声预测加速医学图像分割。实验表明,尽管减少了反向步骤,PD-DDPM在保持高质量分割的同时,还能与高级分割模型结合,提升性能并提供不确定性估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于预分割扩散采样的加速扩散模型医学图像分割

我觉得这个创新点很好,就是没有代码555555

摘要

基于去噪扩散概率模型(DDPM),医学图像分割可以被描述为一个条件图像生成任务,该任务允许计算分割的逐像素不确定性映射,并允许隐式集成分割以提高分割性能。然而,DDPM需要许多迭代去噪步骤来从高斯噪声中生成分割,导致推理效率极低。为了缓解这一问题,我们提出了一种有原则的加速策略,称为预分割扩散采样DDPM (PD-DDPM),该策略专门用于医学图像分割。其关键思想是基于单独训练的分割网络获得预分割结果,并根据前向扩散规则构造噪声预测(非高斯分布)。然后,我们可以从噪声预测开始,使用更少的反向步骤来生成分割结果。

实验表明,PD-DDPM在显著减少反向步数的情况下,比代表性基线方法的分割效果更好。此外,PD-DDPM与现有的高级分割模型是正交的,可以结合起来进一步提高分割性能。

1 介绍

去噪扩散概率模型(Denoising Diffusion Probabilistic Models, DDPM)[1,2]是深度生成模型的一个类别,由于在无条件和条件生成任务中都有很好的效果,近年来成为计算机视觉领域最热门的话题之一[2 - 4]。基于去噪扩散概率模型(DDPM),医学图像分割可以被描述为一个条件图像生成任务,该任务允许计算逐像素的不确定性映射,该分割方法允许隐式的分割集合来提高分割性能[5]。特别是在后续诊断或治疗依赖于分割的医疗应用中,仅提供最可能假设的算法可能导致误诊和次优治疗。如果提供了多个一致的假设,它们可以用来建议进一步的诊断测试来解决歧义,或者获得额外信息的专家可以为后续步骤选择适当的假设[5,6]。

消噪扩散概率模型(DDPM)由两条马尔可夫链组成。在正向扩散过程中,干净图像逐渐受到高斯噪声的干扰,直至近似于高斯分布[1]。

在逆扩散过程中,从采样的高斯噪声中,利用训练好的去噪深度神经网络对数据进行迭代去噪,得到干净的图像。

因此,通过对采样的高斯噪声进行迭代去噪,可以实现对DDPM的合成。对于医学图像分割,我们可以在地面真值分割的基础上训练DDPM,并在训练和采样过程的每一步中使用图像作为先验[5]。

然而,普通DDPM的一个主要问题是推理效率低下。因为从DDPM中获得干净的分割通常需要数百甚至数千个去噪步骤,每个步骤都涉及到去噪神经网络的前向预测。

为了加速ddpm,提出了几种方法。

Song等[7]试图通过使用非马尔可夫逆过程来减少扩散步骤的数量。与DDPM将噪声尺度定义为常数不同的是,San-Roman等[8]提出了一种自适应噪声调度方法,用于估计在推理时给定当前输

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值