Occupancy Flow: 4D Reconstruction by Learning Particle Dynamics论文笔记

Motivation

it is not clear how to extend these results to time-varying topologies. Approaches treating each time step individually lack continuity and exhibit slow inference, while traditional 4D reconstruction methods often utilize a template model or discretize the 4D space at fixed resolution

目前的SOTA方法难以扩展到时变拓扑结构。单独处理每个时间步长的方法缺乏连续性,推理速度慢,而传统的4D重建方法通常使用模板模型或以固定分辨率离散4D空间

Contribution

present Occupancy Flow, a novel spatio-temporal representation of time-varying 3D geometry with implicit correspondences

具有隐式对应的时变三维几何的时空表示。模型隐式地随时间产生对应关系,从而实现快速推断,同时提供时间动态的合理物理描述


相关工作

4D重构:目前的方法有,固定视角的模板模型,多视角,强动作假设(如刚性和线性假设)

多视角:

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值