1、最小二乘回归、Lasso、岭回归

理论知识

1、最小二乘回归

假设有m个特征,n个样本点,则输入数据为:
在这里插入图片描述
于是可以得到:
在这里插入图片描述
由此我们计算得到的损失为:
在这里插入图片描述
优化w,对w求偏导得:
在这里插入图片描述
在这里插入图片描述
由此可以得到:
在这里插入图片描述
上述公式共包含有逆矩阵,而逆矩阵存在得前提是该矩阵为满秩矩阵。但实际中得特征矩阵往往不是满秩矩阵,此时可利用加正则化的数学方法进行改进。

2、Lasso回归

加上一个L1范数惩罚:
在这里插入图片描述

3、Ridge岭回归

加上一个L2范数惩罚:
在这里插入图片描述

4、Elastic Net 弹性网

加上一个L1和L2范数惩罚:
在这里插入图片描述

代码演示

利用机器学习库sklearn进行代码演示与调参,编译器选择jupyter notebook。

1、数据集的获取

想要获取数据集请点击这。选择工具钢和模具钢相关的数据集,部分截图见下图:
在这里插入图片描述
共360行20列数据,我们首先以硬度性能指标,对该数据进行Lasso回归和Ridge回归。

2、代码实操

第一步:导入相关库并从数据集中提取自己需要的特征列和标签列

import pandas as pd 
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import Lasso,Ridge
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean_squared_error
X = data.iloc[:,3:16]
X

显示结果如下:
在这里插入图片描述

y1 = data.loc[:,['Hardness']]
y1

在这里插入图片描述
第二步:对数据进行标准化处理

scaler = StandardScaler()
X = scaler.fit_transform(X)
X

特征标准化后的显示结果如下:
在这里插入图片描述

y1 = scaler.fit_transform(y1)
y1 

标签标准化后的显示结果如下:
在这里插入图片描述
第三步:划分训练集和测试集并查看大小

X_train, X_test, y_train, y_test = train_test_split(X, y1,test_size=0.3)

在这里插入图片描述
第四步:利用Lasso算法进行回归分析

lasso = Lasso(alpha=0.001)
lasso.fit(X_train,y_train)
y_lasso = lasso.predict(X_test)
np.savetxt('lasso_predict.csv',y_lasso,delimiter=',')
plt.scatter(y_test,y_lasso)
plt.show()

初步显示结果图如下:
在这里插入图片描述
第五步:利用Ridge算法进行回归分析

ridge = Ridge(alpha=0.3)
ridge.fit(X_train,y_train)
y_ = ridge.predict(X_test)
np.savetxt('ridge_predict.csv',y_,delimiter=',')
plt.scatter(y_test,y_)
plt.show()

初步显示结果图如下:
在这里插入图片描述
第六步:MSE损失与特征系数分析
Lasso回归的MSE损失:
在这里插入图片描述
Lasso回归的各特征系数和截距:
在这里插入图片描述

Ridge回归的MSE损失:
在这里插入图片描述
Ridge回归的各特征系数和截距:
在这里插入图片描述

总结

损失还是挺大的,回归预测的结果并不是特别好,上文仅仅是给了一个大致流程,下面还需要进行Lasso回归和Ridge回归中的参数调节,即调参,我会在以后的学习中进行逐步更新的。同时还要对回归预测的结果图进行精修,见下图:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

steelDK

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值