最小二乘法,岭回归,LASSO

1. 最小二乘法:基于均方误差最小化来进行模型求解的方法


求解过程:

参考:https://mp.csdn.net/postedit/79889335

2. 岭回归:在“最小二乘法”的基础上引入L2范数正则化


处处可导,因此岭回归有闭式解。

3. LASSO:在“最小二乘法”的基础上引入L1范数正则化


在0点位置不可导,因此LASSO没有闭式解。常用近端梯度下降(PGD)算法(周志华《机器学习》)和快速迭代收缩阈值(FISTA)算法(于剑《机器学习》)求解。


岭回归和LASSO求解过程参考:

http://freemind.pluskid.org/machine-learning/sparsity-and-some-basics-of-l1-regularization/#ed61992b37932e208ae114be75e42a3e6dc34cb3


L1范数和L2范数正则化都有助于降低过拟合风险,但是前者还会带来一个额外的好处:它比后者更易于获得“稀疏”(Sparse)解,即它求得的w会有更少的非零分量。

详情参考周志华《机器学习》P252

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值