最小二乘 岭回归 lasso回归

线性回归适用于数值型数据,目的是对数据进行预测。线性回归的一般模型可以表示为:

y=θ0+i=1mθixi

x=(1,x1,,xn)T,θ=(θ0,θ1,,θn)T ,则上式可以重写为
y=θTx=xTθ

在线性回归中,损失函数是平方损失 L(y,f(x))=(yf(x))2
假设给定数据集 T={(x1,y1),(x2,y2),,(xm,ym)} ,
假设 xi=(1,x1i,,xni)T , y=(y1,y2,,ym)T , X=(xT1,,xTm)T , 则线性回归的矩阵形式为

y=Xθ

经验风险为
R=i=1m(yixTiθ)2=(yXθ)T(yXθ)

θ 求导数
Rθ=2XT(yXθ)=0

得到 θ^=(XTX)1XTy
值得注意的是,上述公式中包含 (XTX)1 ,因此这个方程只有个逆矩阵存在时才有用。该方法称为 普通最小二乘法(ordinary least squares)。

线性回归的一个问题是有可能出现欠拟合现象,因为它求的是具有最小均方差的无偏估计量。如果模型欠拟合,则不能取得很好的效果。所以有些方法允许在估计中引入一些偏差,从而降低均方误差。其中一个方差就是局部加权线性回归(Locally weighted Linear regression)。

在该算法中,我们给带预测点附近的每个点赋予一定的权重,然后以加权的平方误差为目标函数,求解参数向量。
在普通最小二乘法中,目标函数为

R=i=1m(yixTiθ)2

而在LWLR中,目标函数为
R=i=1mwi(yixTiθ)2

其中, wi 是指样本 xi 相对于待预测变量 x 的权重。
LWLR使用 “核”来对附近的点赋予更高的权重,最常用的是高斯核,高斯核对应的权重如下:
W(i,i)=exp(|xix|2k2)

这样就构建了一个只含对角元素的权重矩阵 W .
假设V是一个对角矩阵,且 VV=W , 即 Vii=Wii ,且有 VT=V ,那么LWLR的损失函数可以用矩阵表示为
R=(V(yXθ))T(V(yXθ)) ,
θ 求导得到
Rθ=2XTVTV(yXθ)=0

得到
θ^=(XTWX)1XTWy

上面讨论到,如果 XTX 的逆矩阵不存在,则普通最小二乘法就会失效。比如,属性比样本多,则逆矩阵不存在。解决的办法是引入正则化项。下面,我们分别讨论岭回归(Ridge Regression)和lasso回归(lasso Regression)。

岭回归是在目标函数中加入了L2正则化项,改进后的目标函数为

R=i=1m(yixTiθ)2+λj=1nθ2j

或者可以写为:
mini=1m(yixTiθ)2s.t.j=1nθ2jt

目标函数的矩阵形式可以写为:
R=(yXθ)T(yXθ)+λθTθ

求导后得到:
Rθ=2XT(yXθ)+2λθ=0

结果为
θ^=(XTX+λI)1XTy

其中, I 为单位矩阵。
岭回归相当于在矩阵XTX上加上一个 λI 从而使得矩阵非奇异,进而能对其求逆.

如果在目标函数中加入L1正则化项,则得到了Lasso (Least Absolute Shrinkage and Selection Operator)回归。lasso回归的目标函数可以写为:

R=i=1m(yiθTxi)2+λj=1n|θj|

或者可以写为:

mini=1m(yixTiθ)2s.t.j=1n|θj|t

因为L1正则化不可导,所以我们不在继续讨论。具如果有兴趣,可以参看该文档

参考文档:
《机器学习实战》
《The Elements of Statistical Learning 》
《斯坦福机器学习讲义(全)Stanford_Machine_Leaning》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhengjihao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值