MCMC~

蒙特卡洛采样方法

在这里插入图片描述
1. cdf采样
根据pdf求积分得到cdf,之后在y(0-1)直接均匀分布取值即可采样出x
对于大部分分布来说,无法求出cdf
2. adjection sampling
在可行域中就接受,否则不接受
3.重要性采样
重新构造一个分布q(x),在q(x)上进行采样(cdf等),同时增加一个权重来纠偏,如果真实p大,q小了那就权重放大,否则权重放下。

马尔可夫链

在这里插入图片描述

MCMC

MH

从第一个值出发,Q是随机矩阵 α \alpha α为接受率,如果接受那么就取新采样出的样本,否则还是采样本样本。接受率控制了马尔科夫链是一个平稳分布。

在这里插入图片描述
在这里插入图片描述

采样

在这里插入图片描述

其他参考资料

链接:https://zhuanlan.zhihu.com/p/30003899
这篇博客写的很不错哦~

03-25
<think>好的,我需要帮助用户了解MCMC算法的概念和编程实现。首先,我得回忆一下MCMC的基础知识,确保自己理解正确。MCMC是马尔可夫链蒙特卡罗的缩写,主要用于从复杂概率分布中抽样,特别是在高维空间或者解析解难以求得的情况下。 接下来,我需要整理MCMC的核心概念。比如,马尔可夫链的平稳分布,这是保证抽样结果正确性的关键。还有Metropolis-Hastings算法,这是最经典的MCMC方法之一。另外,Gibbs抽样也是常用的一种方法,适用于条件分布容易采样的情形。 然后,编程实现部分。用户可能希望看到具体的代码示例,Python是比较常用的语言,所以我应该用Python来写。Metropolis-Hastings算法需要先定义目标分布,比如正态分布,然后选择提议分布,比如均匀分布或者正态分布。代码的结构包括初始化参数、循环迭代、接受或拒绝样本等步骤。需要注意的是调整步长参数,以确保合适的接受率,通常推荐在20%-50%之间。 验证算法的正确性也很重要。可以通过绘制抽样结果的直方图,并与目标分布的概率密度函数对比,观察是否匹配。此外,可能需要提到收敛诊断的方法,比如Gelman-Rubin统计量,但代码示例中可以简单用图形对比来展示。 用户可能的问题包括如何选择提议分布,如何处理收敛问题,MCMC的应用场景,以及不同算法之间的比较,比如MH和Gibbs。这些可以作为相关问题列在最后,帮助用户进一步探索。 需要检查LaTeX格式是否正确,所有数学公式都用$...$或$$...$$包裹。例如,目标分布的定义,接受概率的计算等。确保代码块语法正确,注释清晰,方便用户理解。 最后,确保回答结构清晰,分点讲解概念和实现步骤,代码示例后附上相关问题和引用。引用部分要根据提供的参考信息添加,但用户提供的引用似乎与MCMC无关,可能需要调整或者确认是否有误。这里可能用户提供的引用有误,但按照要求还是在末尾加上引用标识。</think>### MCMC算法基础与实现 马尔可夫链蒙特卡罗(MCMC)是一种通过构建马尔可夫链从复杂概率分布中抽样的方法[^1]。其核心思想是通过迭代生成样本,使得马尔可夫链的平稳分布等于目标分布。常见算法包括**Metropolis-Hastings**和**Gibbs抽样**。 #### 关键步骤 1. **目标分布**:定义需抽样的分布$p(x)$。 2. **提议分布**:选择过渡分布$q(x'|x)$生成候选样本。 3. **接受概率**:计算候选样本的接受概率$\alpha = \min\left(1, \frac{p(x')q(x|x')}{p(x)q(x'|x)}\right)$。 4. **迭代更新**:以概率$\alpha$接受候选样本,否则保留当前样本。 #### Python实现示例(Metropolis-Hastings) 以下代码从正态分布$N(0,1)$中抽样: ```python import numpy as np import matplotlib.pyplot as plt def target_distribution(x): return np.exp(-x**2 / 2) / np.sqrt(2 * np.pi) # 标准正态分布 def metropolis_hastings(n_samples, initial=0, step_size=1): samples = [initial] current = initial for _ in range(n_samples): proposal = current + np.random.normal(0, step_size) accept_ratio = target_distribution(proposal) / target_distribution(current) if np.random.rand() < accept_ratio: current = proposal samples.append(current) return samples # 生成样本并验证 samples = metropolis_hastings(10000) plt.hist(samples, bins=50, density=True) x = np.linspace(-4, 4, 100) plt.plot(x, target_distribution(x), 'r') plt.show() ``` **代码说明**: - `step_size`控制提议分布的步长,影响接受率[^2]。 - 直方图应与红色曲线(目标分布)吻合,验证算法正确性。 #### 优化与注意事项 - **步长调整**:接受率通常在20%-50%之间最优。 - **预烧期**:丢弃前$N$个样本以避免初始值影响。 - **相关性**:可通过稀疏采样(如每隔10个样本取一次)降低样本相关性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值