PyTorch⑨---卷积神经网络_正则化层、线性层

正则化层

BN层

  1. 加快网络的训练和收敛的速度;
  2. 控制梯度爆炸防止梯度消失;
  3. 防止过拟合。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

Recurrent Layers

在这里插入图片描述

Transformer Layers

在这里插入图片描述

线性层 Linear Layers

在这里插入图片描述
在这里插入图片描述

在卷积神经网络里最后几层,会把卷积层摊开平放到全连接层里计算,然后进入sofmax进行分类。
线性层即为全连接层,通常在全连接层后加非线性激活,再加dropout层。

例如在vgg16里:
7×7×512----torch.flatten(imgs)—>1×1×4096—Linear(4096,1000)—>1×1×1000
注意:

  1. flatten和fc不是一回事,flatten只是将输入“压平”,即把多维的输入一维化,常用在从卷积层到全连接层的过渡。Flatten不影响batch的大小。
  2. 全连接层Linear(),是神经网络的分类器,使用卷积核实现。

在这里插入图片描述

在这里插入图片描述

import torch.nn
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader

dataset=torchvision.datasets.CIFAR10("dataset_CIFAR10",
                                     train=False,
                                     transform=torchvision.transforms.ToTensor())

dataloader=DataLoader(dataset,batch_size=64,drop_last=True)

for data in dataloader:
    imgs,targets=data
    print(imgs.shape)
    output=torch.reshape(imgs,(1,1,1,-1)) #展开,看一下展开后的数据 -1在哪里哪里就自动计算
    print(output.shape)

class Demo(nn.Module):

    def __init__(self) -> None:
        super().__init__()
        self.linear1=Linear(196608,10) #把全部展开的196608变成10,最后分类的结果是10类
    def forward(self,input):
        output=self.linear1(input)
        return output

demo=Demo()
for data in dataloader:
    imgs,targets=data
    print(imgs.shape)
    output=torch.flatten(imgs)#也可以展平看,和上面计算的结果一样 直接展平,在线性输出10
    print(output.shape)
    output=demo(output)
    print(output.shape)


结果:
在这里插入图片描述

Dropout Layers

在这里插入图片描述

Sparse Layers

在这里插入图片描述
自然语言处理中使用:
在这里插入图片描述

Distance Functions

在这里插入图片描述

Loss Functions

损失函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

莫听穿林打叶声@

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值