正则化层
BN层
- 加快网络的训练和收敛的速度;
- 控制梯度爆炸防止梯度消失;
- 防止过拟合。
Recurrent Layers
Transformer Layers
线性层 Linear Layers
在卷积神经网络里最后几层,会把卷积层摊开平放到全连接层里计算,然后进入sofmax进行分类。
线性层即为全连接层,通常在全连接层后加非线性激活,再加dropout层。
例如在vgg16里:
7×7×512----torch.flatten(imgs)—>1×1×4096—Linear(4096,1000)—>1×1×1000
注意:
- flatten和fc不是一回事,flatten只是将输入“压平”,即把多维的输入一维化,常用在从卷积层到全连接层的过渡。Flatten不影响batch的大小。
- 全连接层Linear(),是神经网络的分类器,使用卷积核实现。
import torch.nn
import torchvision
from torch import nn
from torch.nn import Linear
from torch.utils.data import DataLoader
dataset=torchvision.datasets.CIFAR10("dataset_CIFAR10",
train=False,
transform=torchvision.transforms.ToTensor())
dataloader=DataLoader(dataset,batch_size=64,drop_last=True)
for data in dataloader:
imgs,targets=data
print(imgs.shape)
output=torch.reshape(imgs,(1,1,1,-1)) #展开,看一下展开后的数据 -1在哪里哪里就自动计算
print(output.shape)
class Demo(nn.Module):
def __init__(self) -> None:
super().__init__()
self.linear1=Linear(196608,10) #把全部展开的196608变成10,最后分类的结果是10类
def forward(self,input):
output=self.linear1(input)
return output
demo=Demo()
for data in dataloader:
imgs,targets=data
print(imgs.shape)
output=torch.flatten(imgs)#也可以展平看,和上面计算的结果一样 直接展平,在线性输出10
print(output.shape)
output=demo(output)
print(output.shape)
结果:
Dropout Layers
Sparse Layers
自然语言处理中使用:
Distance Functions
Loss Functions
损失函数