同态基本定理及其应用

整体思路

对群G作关于子群N的陪集分解: G = ∪ a ∈ R N a G=\mathop{\cup}\limits_{a\in R}Na G=aRNa(这句话意味着左、右陪集分解的 N a Na Na完全一样),其中每个 N a Na Na都当作一个元素,那么要想让集合 A = { N a ∣ a ∈ R } A=\{Na|a\in R\} A={NaaR}成为群, N N N就得是正规子群。当 A A A变成群后( A A A称为商群),就可以继续研究这种特殊的群的性质了(同态基本定理及其应用)。

正规子群

定义: N ≤ G , ∀ g ∈ G , g N = N g , 那 么 N 是 G 的 N\le G,\forall g\in G,gN=Ng,那么N是G的 NG,gG,gN=Ng,NG正规子群 记 为 : N ◃ G . 记为:N\triangleleft G. NG.

引理1: N ≤ G , 下 列 条 件 彼 此 等 价 : ( 1 ) N ◃ G ; ( 2 ) ∀ g ∈ G , g N = N g ; ( 3 ) N G ( N ) = G ; ( 4 ) G 对 于 N 的 每 个 左 陪 集 均 是 右 陪 集 \begin{aligned}&N\le G,下列条件彼此等价:\\&(1)N\triangleleft G;\\&(2)\forall g\in G,gN=Ng;\\&(3)N_G(N)=G;\\&(4)G对于N的每个左陪集均是右陪集\\\end{aligned} NG(1)NG;(2)gG,gN=Ng;(3)NG(N)=G;(4)GN

证:
( 1 ) ⇒ ( 2 ) : 根 据 定 义 可 知 。 ( 2 ) ⇒ ( 3 ) : g N = N g ⇒ N = g N g − 1 ⇒ N G ( N ) = G ( 3 ) ⇒ ( 4 ) : ∀ g ∈ G , N = g N g − 1 ⇒ ∀ g ∈ G , N g = g N ⇒ ( 4 ) 成 立 ( 4 ) ⇒ ( 1 ) : 由 已 知 得 : ∀ g ∈ G , ∃ g ′ ∈ G , g N = N g ′ 由 于 1 ∈ N , 所 以 g ⋅ 1 ∈ g N = N g ′ 即 ∀ g ∈ G , ∃ n ′ ∈ N , g = n ′ g ′ ⇒ ∀ n ∈ N , n g = n n ′ g ′ 由 n n ′ ∈ N 可 知 ∀ n ∈ N , n g ∈ N g ′ 根 据 消 去 律 , ∣ N g ∣ = ∣ N ∣ = ∣ N g ′ ∣ , 故 N g = N g ′ = g N 根 据 N ◃ G 的 定 义 , ( 1 ) 成 立 。        □ \begin{aligned} &(1)\Rightarrow(2):根据定义可知。\\ &(2)\Rightarrow(3):gN=Ng\Rightarrow N=gNg^{-1}\Rightarrow N_G(N)=G\\ &(3)\Rightarrow(4):\forall g\in G,N=gNg^{-1}\Rightarrow \forall g\in G,Ng=gN\Rightarrow (4)成立\\ &(4)\Rightarrow(1):由已知得:\forall g\in G,\exists g'\in G,gN=Ng'\\ &由于1\in N,所以g\cdot 1\in gN=Ng'\\ &即\forall g\in G,\exists n'\in N,g=n'g'\Rightarrow \forall n\in N,ng=nn'g'\\ &由nn'\in N可知\forall n\in N,ng\in Ng'\\ &根据消去律,|Ng|=|N|=|Ng'|,故Ng=Ng'=gN\\ &根据N\triangleleft G的定义,(1)成立。\;\;\;\Box \end{aligned} (1)(2)(2)(3):gN=NgN=gNg1NG(N)=G(3)(4):gG,N=gNg1gG,Ng=gN(4)(4)(1)::gG,gG,gN=Ng1N,g1gN=NggG,nN,g=ngnN,ng=nngnnNnN,ngNg,Ng=N=Ng,Ng=Ng=gNNG,(1)

商群

定义: 设 N ◃ G , 那 么 ∀ a ∈ G , N a = a N , 记 a ‾ = N a , 群 G ‾ = { a ‾ ∣ a ∈ G } 叫 做 G 对 N 的 设N\triangleleft G,那么\forall a \in G,Na=aN,记\overline{a}=Na,群\overline{G}=\{\overline{a}|a\in G\}叫做G对N的 NG,aG,Na=aN,a=Na,G={aaG}GN 商群 记 为 G ‾ = G / N 记为\overline{G}=G/N G=G/N

根据拉格朗日定理, ∣ G ‾ ∣ = ∣ G ∣ ∣ N ∣ |\overline{G}|=\frac{|G|}{|N|} G=NG
下面是商群概念的应用:

定理2: 设 N ◃ G . 令 μ ‾ 是 商 群 G ‾ = G / N 的 全 体 子 群 组 成 的 集 合 , μ = { M ∣ N ≤ M ≤ G } , 即 G 和 N 的 中 间 群 全 体 . 则 f : μ → μ ‾ , M ↦ M ‾ = M / N 是 一 一 对 应 . 并 且 对 M ∈ μ , M ◃ G ⇔ M ‾ ◃ G ‾ \begin{aligned}&设N\triangleleft G.令\overline{\mu}是商群\overline{G}=G/N的全体子群组成的集合,\\&\mu=\{M|N\le M\le G\},即G和N的中间群全体.\\&则f:\mu\rightarrow \overline{\mu},M\mapsto\overline{M}=M/N是一一对应.\\&并且对M\in \mu,M\triangleleft G\Leftrightarrow \overline{M}\triangleleft \overline{G}\end{aligned} NG.μG=G/N,μ={MNMG},GN.f:μμ,MM=M/N.Mμ,MGMG

证: μ 和 μ ‾ 都 是 群 的 集 合 , 即 : 这 两 个 集 合 中 的 任 意 元 素 都 是 群 μ 中 元 素 M 可 表 示 为 : N ∪ { a 1 , a 2 , ⋯ ∣ a i ∈ G − N } ; μ ‾ 中 元 素 M ‾ 可 表 示 为 : { N , g 1 N , g 2 N , ⋯ ∣ g i ∈ R } 只 需 找 到 映 射 f 的 逆 映 射 , 即 可 证 明 f 是 一 一 对 应 。 设 映 射 h : μ ‾ → μ , M ‾ ↦ { g ∈ G ∣ g N ∈ M ‾ } 由 于 N ∈ M ‾ 恒 成 立 , 所 以 N ⊆ { g ∈ G ∣ g N ∈ M ‾ } 由 M ‾ = { N , g 1 N , g 2 N , ⋯ ∣ g i ∈ R } 是 群 可 知 { g ∈ G ∣ g N ∈ M ‾ } 是 G 的 子 群 当 ∣ M ‾ ∣ = [ G : N ] 时 , { g ∈ G ∣ g N ∈ M ‾ } = G 综 上 所 述 , { g ∈ G ∣ g N ∈ M ‾ } = M . 故 映 射 h : μ ‾ → μ , M ‾ ↦ M h f ( M ) = h ( M ‾ ) = M ; f h ( M ‾ ) = f ( M ) = M ‾ 所 以 映 射 h 是 映 射 f 的 逆 映 射 , 故 f 是 一 一 对 应 。 ∀ g ∈ G , M ◃ G ⇔ g M g − 1 = M ⇔ f ( g M g − 1 ) = g { N , g 1 N , g 2 N , ⋯ ∣ g i ∈ R } g − 1 = g N { N , g 1 N , g 2 N , ⋯ ∣ g i ∈ R } N g − 1 = g N M ‾ N g − 1 由 g N , N g − 1 ∈ G ‾ 和 g 的 任 意 性 知 M ‾ ◃ G ‾ 所 以 M ◃ G ⇔ M ‾ ◃ G ‾        □ \begin{aligned} &\mu和\overline\mu都是群的集合,即:这两个集合中的任意元素都是群\\ &\mu中元素M可表示为:N\cup\{a_1,a_2,\cdots|a_i\in G-N\};\\ &\overline\mu中元素\overline{M}可表示为:\{N,g_1N,g_2N,\cdots|g_i\in R\}\\ &只需找到映射f的逆映射,即可证明f是一一对应。\\ &设映射h:\overline{\mu}\rightarrow \mu,\overline{M}\mapsto \{g\in G|gN\in \overline{M}\}\\ &由于N\in \overline M恒成立,所以N\subseteq\{g\in G|gN\in \overline{M}\}\\ &由\overline{M}=\{N,g_1N,g_2N,\cdots|g_i\in R\}是群可知\\ &\{g\in G|gN\in \overline{M}\}是G的子群\\ &当|\overline{M}|=[G:N]时,\{g\in G|gN\in \overline{M}\}=G\\ &综上所述,\{g\in G|gN\in \overline{M}\}=M.故映射h:\overline{\mu}\rightarrow \mu,\overline{M}\mapsto M\\ &hf(M)=h(\overline M)=M;fh(\overline M)=f(M)=\overline M\\ &所以映射h是映射f的逆映射,故f是一一对应。\\ &\forall g\in G,M\triangleleft G\Leftrightarrow gMg^{-1}=M\Leftrightarrow \\ &f(gMg^{-1})=g\{N,g_1N,g_2N,\cdots|g_i\in R\}g^{-1}\\&=gN\{N,g_1N,g_2N,\cdots|g_i\in R\}Ng^{-1}\\ &=gN\overline MNg^{-1}\\ &由gN,Ng^{-1}\in \overline G和g的任意性知\overline M\triangleleft \overline G\\ &所以M\triangleleft G\Leftrightarrow\overline M\triangleleft \overline G \;\;\;\Box \end{aligned} μμ,:μM:N{a1,a2,aiGN};μM:{N,g1N,g2N,giR}ffh:μμ,M{gGgNM}NMN{gGgNM}M={N,g1N,g2N,giR}{gGgNM}GM=[G:N],{gGgNM}=G,{gGgNM}=M.h:μμ,MMhf(M)=h(M)=M;fh(M)=f(M)=MhffgG,MGgMg1=Mf(gMg1)=g{N,g1N,g2N,giR}g1=gN{N,g1N,g2N,giR}Ng1=gNMNg1gN,Ng1GgMGMGMG

Klein四元群

现已知四元群 G G G中若有一元素的阶是4,则 G = ∼ Z 4 G\mathop{=}\limits^\sim Z_4 G=Z4.现讨论 g ( ≠ 1 ) ∈ G g(\ne 1)\in G g(=1)G都是2阶元素的情况:
∀ a , b ∈ G , ( a b ) 2 = a b a b = 1 ⇒ a b = a ( a b a b ) b = b a ⇒ G 是 阿 贝 尔 群 \forall a,b\in G,(ab)^2=abab=1\Rightarrow ab=a(abab)b=ba\Rightarrow G是阿贝尔群 a,bG,(ab)2=abab=1ab=a(abab)b=baG
a ∈ G ⇒ a 2 = 1 ⇒ a = a − 1 ⇒ < a > = { 1 , a } a\in G\Rightarrow a^2=1\Rightarrow a=a^{-1}\Rightarrow <a>=\{1,a\} aGa2=1a=a1<a>={1,a}
则 对 于 b ∈ G 且 b ∉ < a > 有 : G / < a > = { < a > , b < a > } 则对于b\in G且b\notin <a>有:G/<a>=\{<a>,b<a>\} bGb/<a>:G/<a>={<a>,b<a>}
此 时 G 的 四 个 互 异 元 素 都 已 经 找 到 : { 1 , a , b , a b } 它 的 每 一 个 非 幺 元 的 阶 都 是 2 , 这 个 群 称 为 K 4 , 与 Z 4 不 同 构 。 此时G的四个互异元素都已经找到:\{1,a,b,ab\}它的每一个非幺元的阶都是2,这个群称为K_4,与Z_4不同构。 G:{1,a,b,ab}2K4Z4

同态基本定理

定 理 1 : 设 f : G → G ′ 是 群 的 同 态 . 则 I m f = f ( G ) 是 G ′ 的 子 群 , K e r f = f − 1 ( 1 ) = { g ∈ G ∣ f ( g ) = 1 } 是 G 的 正 规 子 群 . 并 且 有 群 同 构 f ‾ : G / K e r f → ∼ I m f , f ‾ ( g ‾ ) = f ( g ) \begin{aligned}&定理1:设f:G\rightarrow G'是群的同态.则Im f=f(G)是G'的子群,\\&Ker f=f^{-1}(1)=\{g\in G|f(g)=1\}是G的正规子群.\\&并且有群同构\overline{f}:G/Ker f\mathop{\rightarrow}\limits^{\sim} Im f,\overline{f}(\overline{g})=f(g)\end{aligned} 1f:GG.Imf=f(G)G,Kerf=f1(1)={gGf(g)=1}G.f:G/KerfImf,f(g)=f(g)

证:
证 I m f 是 G ′ 的 子 群 : 因 为 f 是 同 态 映 射 , 所 以 ∀ f ( g 1 ) , f ( g 2 ) ∈ I m f , f ( g 1 ) f − 1 ( g 2 ) = f ( g 1 ) f ( g 2 − 1 ) = f ( g 1 g 2 − 1 ) 由 g 1 g 2 − 1 ∈ G 可 知 f ( g 1 ) f − 1 ( g 2 ) = f ( g 1 g 2 − 1 ) ∈ I m f , 故 I m f 是 G ′ 的 子 群 证 K e r f 是 G 的 正 规 子 群 : ∀ k ∈ K e r f , f ( g − 1 k g ) = f − 1 ( g ) f ( k ) f ( g ) = 1 ⇒ g − 1 k g ∈ K e r f ⇒ g − 1 K e r f g = K e r f 故 K e r f ◃ G 证 映 射 f ‾ 存 在 : 根 据 映 射 的 定 义 , 即 证 若 g ‾ 1 = g ‾ 2 则 f ‾ ( g ‾ 1 ) = f ‾ ( g ‾ 2 ) g ‾ 1 = g ‾ 2 ⇒ ∃ k 1 , k 2 ∈ K e r f , g 1 k 1 = g 2 k 2 ⇒ g 1 k 1 k 2 − 1 = g 2 所 以 f ‾ ( g ‾ 2 ) = f ‾ ( g 1 k 1 k 2 − 1 ‾ ) = f ( g 1 ) f ( k 1 k 2 − 1 ) = f ( g 1 ) = f ‾ ( g ‾ 1 ) 证 f ‾ 是 同 态 映 射 : f ‾ ( g ‾ 1 ⋅ g ‾ 2 ) = f ‾ ( g 1 g 2 ‾ ) = f ( g 1 ⋅ g 2 ) = f ( g 1 ) ⋅ f ( g 2 ) = f ‾ ( g ‾ 1 ) ⋅ f ‾ ( g ‾ 2 ) 证 f ‾ 是 满 同 态 : ∀ a ∈ I m f , ∃ g ∈ G 使 得 f ( g ) = a . 因 为 g K e r f ∈ G / K e r f 所 以 ∀ f ( g ) ∈ I m f , ∃ g ‾ ∈ G / K e r f , f ‾ ( g ‾ ) = f ( g ) 证 f ‾ 是 单 同 态 : f ( g 1 ) = f ( g 2 ) ⇒ f − 1 ( g 2 ) f ( g 1 ) = f ( g 2 − 1 g 1 ) = 1 ⇒ g 2 − 1 g 1 ∈ K e r f 所 以 g 2 − 1 g 1 ⋅ K e r f = K e r f ⇒ g 1 ⋅ K e r f = g 2 ⋅ K e r f ⇒ g ‾ 1 = g ‾ 2 综 上 所 述 , f ‾ 是 群 同 构 。        □ \begin{aligned} &证Im f是G'的子群:\\ &因为f是同态映射,所以\forall f(g_1),f(g_2)\in Imf,f(g_1)f^{-1}(g_2)=f(g_1)f(g^{-1}_2)=f(g_1g^{-1}_2)\\ &由g_1g^{-1}_2\in G可知f(g_1)f^{-1}(g_2)=f(g_1g^{-1}_2)\in Im f,故Imf是G'的子群\\ &证Kerf是G的正规子群:\\ &\forall k\in Ker f,f(g^{-1}kg)=f^{-1}(g)f(k)f(g)=1\Rightarrow g^{-1}kg\in Kerf\Rightarrow g^{-1}Ker f g=Kerf\\ &故Kerf\triangleleft G\\ &证映射\overline{f}存在:根据映射的定义,即证若\overline g_1=\overline g_2则\overline f(\overline g_1)=\overline f(\overline g_2)\\ &\overline g_1=\overline g_2\Rightarrow \exists k_1,k_2\in Ker f,g_1k_1=g_2k_2\Rightarrow g_1k_1k_2^{-1}=g_2\\ &所以\overline f(\overline g_2)=\overline f(\overline{g_1k_1k_2^{-1}})=f(g_1)f(k_1k_2^{-1})=f(g_1)=\overline f(\overline g_1)\\ &证\overline f是同态映射:\\ &\overline f(\overline g_1\cdot \overline g_2)=\overline f(\overline{g_1g_2})=f(g_1\cdot g_2)=f(g_1)\cdot f(g_2)=\overline f(\overline g_1)\cdot \overline f(\overline g_2)\\ &证\overline f是满同态:\\ &\forall a\in Imf,\exists g\in G使得f(g)=a.\\ &因为gKerf\in G/Ker f所以\forall f(g)\in Imf,\exists \overline g\in G/Ker f,\overline f(\overline g)=f(g)\\ &证\overline f是单同态:\\ &f(g_1)=f(g_2)\Rightarrow f^{-1}(g_2)f(g_1)=f(g_2^{-1}g_1)=1\Rightarrow g_2^{-1}g_1\in Ker f\\ &所以g_2^{-1}g_1\cdot Ker f=Ker f \Rightarrow g_1\cdot Ker f=g_2\cdot Ker f\Rightarrow \overline g_1=\overline g_2\\ &综上所述,\overline f 是群同构。\;\;\;\Box \end{aligned} ImfG:ff(g1),f(g2)Imf,f(g1)f1(g2)=f(g1)f(g21)=f(g1g21)g1g21Gf(g1)f1(g2)=f(g1g21)Imf,ImfGKerfGkKerf,f(g1kg)=f1(g)f(k)f(g)=1g1kgKerfg1Kerfg=KerfKerfGfg1=g2f(g1)=f(g2)g1=g2k1,k2Kerf,g1k1=g2k2g1k1k21=g2f(g2)=f(g1k1k21)=f(g1)f(k1k21)=f(g1)=f(g1)ff(g1g2)=f(g1g2)=f(g1g2)=f(g1)f(g2)=f(g1)f(g2)faImf,gG使f(g)=a.gKerfG/Kerff(g)Imf,gG/Kerf,f(g)=f(g)ff(g1)=f(g2)f1(g2)f(g1)=f(g21g1)=1g21g1Kerfg21g1Kerf=Kerfg1Kerf=g2Kerfg1=g2f

推论 设 f : G → G ′ 是 群 的 同 态 . 则 ( 1 ) f 为 单 同 态 ⇔ K e r f = { 1 } ; ( 2 ) 若 f 为 满 同 态 , 则 有 ( 正 则 ) 同 构 f ‾ : G / K e r f → ∼ G ′ . \begin{aligned}&设f:G\rightarrow G'是群的同态.则\\&(1)f为单同态\Leftrightarrow Ker f=\{1\};\\&(2)若f为满同态,则有(正则)同构\overline f:G/Ker f \mathop{\rightarrow}\limits^{\sim}G'.\end{aligned} f:GG.(1)fKerf={1};(2)f()f:G/KerfG.


( 1 ) 必 要 性 : f 是 单 同 态 ⇒ 1 G ′ ∈ G ′ 的 原 像 只 有 一 个 , 即 ∣ K e r f ∣ = 1 ⇒ f ( g ) = f ( g ) ⋅ f ( K e r f ) = f ( g ⋅ K e r f ) 可 知 K e r f = { 1 G } 充 分 性 : 当 K e r f = { 1 G } 时 , f ( g 1 ) = f ( g 2 ) ⇒ f ( g 1 g 2 − 1 ) = 1 G ′ ⇒ g 1 g 2 − 1 ∈ K e r f g 1 g 2 − 1 = 1 G ⇒ g 1 = g 2 . 由 f ( g 1 ) = f ( g 2 ) ⇒ g 1 = g 2 可 知 f 是 单 同 态 。 ( 2 ) 若 f 是 满 同 态 , 则 I m f = G ′ . 根 据 同 态 基 本 定 理 , f ‾ 是 同 构 映 射 。        □ \begin{aligned} &(1)必要性:f是单同态\Rightarrow 1_{G'}\in G'的原像只有一个,即|Ker f|=1\\ &\Rightarrow f(g)=f(g)\cdot f(Ker f)=f(g\cdot Ker f)可知Ker f=\{1_G\}\\ &充分性:当Ker f=\{1_G\}时,f(g_1)=f(g_2)\Rightarrow f(g_1g_2^{-1})=1_{G'}\Rightarrow g_1g_2^{-1}\in Ker f\\ &g_1g_2^{-1}=1_G\Rightarrow g_1=g_2.由f(g_1)=f(g_2)\Rightarrow g_1=g_2可知f是单同态。\\ &(2)若f是满同态,则Imf=G'.根据同态基本定理,\overline f是同构映射。\;\;\;\Box\\ \end{aligned} (1)f1GG,Kerf=1f(g)=f(g)f(Kerf)=f(gKerf)Kerf={1G}Kerf={1G}f(g1)=f(g2)f(g1g21)=1Gg1g21Kerfg1g21=1Gg1=g2.f(g1)=f(g2)g1=g2f(2)fImf=G.,f

同态基本定理的应用

定 理 3 : 设 N ◃ G , H ≤ G . 则 ( H ∩ N ) ◃ H , N ◃ N H ≤ G , N H / N = ∼ H / H ∩ N \begin{aligned}&定理3:设N\triangleleft G,H\le G.则\\&(H\cap N)\triangleleft H,N\triangleleft NH\le G,NH/N\mathop{=}\limits^{\sim}H/H\cap N\end{aligned} 3:NG,HG.(HN)H,NNHG,NH/N=H/HN


因 为 N H ≤ G , 所 以 由 N ◃ G 可 知 N ◃ N H . 下 文 都 是 关 于 映 射 f : H → N H / N , h ↦ N h 的 讨 论 : 根 据 映 射 的 定 义 , h 1 = h 2 ⇒ N h 1 = N h 2 , 映 射 f 存 在 . ∀ N H / N 中 的 元 素 , 都 可 以 表 示 为 N h ( 其 中 h ∈ H ) . 故 f 是 满 射 . N H / N 的 幺 元 是 N = 1 ‾ . h ∈ K e r f ⇔ f ( h ) = N h = N ⇔ h ∈ N 所 以 k e r f = H ∩ N 所 以 ( H ∩ N ) ◃ H , 根 据 同 态 基 本 定 理 , H / H ∩ N = ∼ N H / N        □ \begin{aligned} &因为NH\le G,所以由N\triangleleft G可知N\triangleleft NH.\\ &下文都是关于映射f:H\rightarrow NH/N,h\mapsto Nh的讨论:\\ &根据映射的定义,h_1=h_2\Rightarrow Nh_1=Nh_2,映射f存在.\\ &\forall NH/N中的元素,都可以表示为Nh(其中h\in H).故f是满射.\\ &NH/N的幺元是N=\overline 1.h\in Kerf\Leftrightarrow f(h)=Nh=N\Leftrightarrow h\in N\\ &所以kerf = H\cap N\\ &所以(H\cap N)\triangleleft H,根据同态基本定理,H/H\cap N\mathop{=}\limits^{\sim}NH/N\;\;\;\Box\\ \end{aligned} NHGNGNNH.f:HNH/N,hNh,h1=h2Nh1=Nh2,f.NH/N,Nh(hH).f.NH/NN=1.hKerff(h)=Nh=NhNkerf=HN(HN)H,,H/HN=NH/N

定 理 4 : 设 N ◃ G , M ◃ G , N ≤ M , 则 G / M = ∼ G / N M / N 定理4:设N\triangleleft G,M\triangleleft G,N\le M,则G/M\mathop{=}\limits^{\sim}\frac{G/N}{M/N} 4:NG,MG,NM,G/M=M/NG/N


设 f : G / N → G / M , g N ↦ g M 根 据 映 射 的 定 义 , g 1 N = g 2 N ⇒ g 2 − 1 g 1 N = N ⇒ g 2 − 1 g 1 ∈ N 故 g 2 − 1 g 1 ∈ M ⇒ M = g 2 − 1 g 1 M ⇒ g 2 M = g 1 M . 所 以 映 射 f 存 在 。 ∀ G / M 中 的 元 素 都 可 以 表 示 为 g M ( 其 中 g ∈ G ) , g M 的 原 像 g N 一 定 存 在 , 所 以 f 是 满 射 . ∀ g 1 N , g 2 N ∈ G / N , f ( g 1 N ⋅ g 2 N ) = f ( g 1 g 2 N ) = g 1 g 2 M = g 1 M ⋅ g 2 M = f ( g 1 N ) ⋅ f ( g 2 N ) , 故 f 是 满 同 态 G / M 的 幺 元 是 M = 1 ‾ g N ∈ K e r f ⇔ g M = M ⇔ g ∈ M ⇔ g N ∈ M / N 所 以 K e r f = M / N 根 据 同 态 基 本 定 理 , G / N M / N = ∼ G / M        □ \begin{aligned} &设f:G/N\rightarrow G/M,gN\mapsto gM\\ &根据映射的定义,g_1N=g_2N\Rightarrow g_2^{-1}g_1N=N\Rightarrow g_2^{-1}g_1\in N\\ &故g_2^{-1}g_1\in M\Rightarrow M=g_2^{-1}g_1 M\Rightarrow g_2M=g_1M.所以映射f存在。\\ &\forall G/M中的元素都可以表示为gM(其中g\in G),gM的原像gN一定存在,所以f是满射.\\ &\forall g_1N,g_2N\in G/N,f(g_1N\cdot g_2N)=f(g_1g_2N)=g_1g_2M\\ &=g_1M\cdot g_2M=f(g_1N)\cdot f(g_2N),故f是满同态\\ &G/M的幺元是M=\overline 1\\ &gN \in Ker f\Leftrightarrow gM=M\Leftrightarrow g\in M\Leftrightarrow gN\in M/N\\ &所以Ker f =M/N\\ &根据同态基本定理,\frac{G/N}{M/N}\mathop{=}\limits^{\sim}G/M\;\;\;\Box\\ \end{aligned} f:G/NG/M,gNgMg1N=g2Ng21g1N=Ng21g1Ng21g1MM=g21g1Mg2M=g1M.fG/MgM(gG),gMgN,f.g1N,g2NG/N,f(g1Ng2N)=f(g1g2N)=g1g2M=g1Mg2M=f(g1N)f(g2N),fG/MM=1gNKerfgM=MgMgNM/NKerf=M/NM/NG/N=G/M

  • 0
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值