【线性代数】5.3,5.4 矩阵对角化

相似矩阵

  • 定义:设 A \bold A A B \bold B B都是 n n n阶矩阵,若有可逆矩阵 P \bold P P,使得
    P − 1 A P = B , \bold P^{-1}\bold A\bold P=\bold B, P1AP=B,则称 B \bold B B A \bold A A的相似矩阵。
  • 性质:若 n n n阶矩阵 A \bold A A B \bold B B相似,则 A \bold A A B \bold B B的特征多项式相同,从而 A \bold A A B \bold B B的特征值亦相同。
  • 性质:如果 n n n阶矩阵 A \bold A A与对角矩阵 Λ = ( λ 1 λ 2 ⋱ λ n ) \bold\Lambda=\begin{pmatrix}\lambda_1\\&\lambda_2\\&&\ddots \\&&&\lambda_n\end{pmatrix} Λ=λ1λ2λn相似,则 λ 1 , λ 2 , . . . , λ n \lambda_1,\lambda_2,...,\lambda_n λ1,λ2,...,λn即是 A \bold A A n n n个特征值。

矩阵对角化

  • 意义:可以便捷地求解矩阵多项式。
  • 条件: n n n阶矩阵 A \bold A A能对角化的充分必要条件是 A \bold A A n n n个线性无关的特征向量。
  • 相似变换矩阵 P \bold P P是由 n n n个特征向量构成的。
  • 充分条件:如果 n n n阶矩阵 A \bold A A n n n个特征值互不相同,则 A \bold A A能对角化。如果 A \bold A A的特征方程有重根时,也可能有 n n n个线性无关的特征向量。

对称矩阵的对角化

对称矩阵有以下性质:

  1. 特征值为实数;->确保运算过程在实数范围。
  2. λ 1 , λ 2 \lambda_1,\lambda_2 λ1,λ2是对称矩阵 A \bold A A的两个特征值, p 1 , p 2 \bold p_1,\bold p_2 p1,p2是对应的特征向量。若 λ 1 ≠ λ 2 \lambda_1\ne\lambda_2 λ1=λ2,则 p 1 \bold p_1 p1 p 2 \bold p_2 p2正交。->相似变换矩阵的范围被限制。
  • 定理:设 A \bold A A n n n阶对称矩阵,则必有正交矩阵 P \bold P P,使得 P − 1 A P = P T A P = Λ \bold P^{-1}\bold A\bold P=\bold P^T\bold A\bold P=\bold\Lambda P1AP=PTAP=Λ,其中 Λ \bold\Lambda Λ是以 A \bold A A n n n个特征值为对角元的对角矩阵。
  • 定理保证了 n n n个线性无关的特征向量的存在,即对称矩阵一定能对角化。
  • 推论:设 A \bold A A n n n阶对称矩阵, λ \lambda λ A \bold A A的特征方程的 k k k重根,则 R ( A − λ E ) = n − k \bold R(\bold A-\lambda\bold E)=n-k R(AλE)=nk,从而对应特征值 λ \lambda λ恰有 k k k个线性无关的特征向量。
  • 对称矩阵对角化的步骤:
  1. 求出特征值。
  2. 求特征向量,对特征向量进行标准正交化。
  3. 根据特征向量写出相似变换矩阵 P \bold P P,注意对角矩阵 Λ \bold\Lambda Λ的对角元的排列次序与 P \bold P P中列向量的排列次序对应。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值