1-1 电路及集总电路模型
- 由电阻、电容、电感等集总参数元件组成的电路称为集总电路。
- 只含电阻元件和电源元件的电路称为电阻电路,是集总电路的一类,另一大类是动态电路。
- 从技术领域来看,电的应用可分为能量和信息两大领域,它们都利用了电能可以几乎瞬时地传送到远处的这一性质。
- 集总假设:当实际电路的尺寸远小于使用时其最高工作频率所对应的波长时,电场和磁场可以分开研究,不考虑电磁场的相互作用,不考虑电磁波的传播现象,认为电能的传送是瞬间完成的。
- 集总元件:满足集总假设的前提下,定义的只反映一种基本电磁现象,且可由数学方法精确定义的理论模型。
- 当电路的尺寸大于最高频率所对应的波长或两者属于同一数量级时,便不能作为集总电路处理,应作为分布参数电路处理。比如我国电力用电的频率为50Hz,对应的波长为6000km,对以此为工作频率的实验室设备来说,其尺寸远小于这一波长,可以按集总电路处理,而对远距离输电线来说,就必须考虑到电场、磁场沿线分布的现象,不能按集总电路来处理。
1-2 电路变量 电流、电压及功率
- 所带电荷的多少称为电量(用符号 q q q或 Q Q Q表示),单位是库仑(其符号为 C C C)。 1 C = 6.24 × 1 0 18 e ⇔ e = 1.60 × 1 0 − 19 C 1C = 6.24\times10^{18}e\Leftrightarrow e=1.60\times10^{-19}C 1C=6.24×1018e⇔e=1.60×10−19C
- 带电粒子有秩序的移动便形成电流。每单位时间内通过导体横截面的电量定义为电流强度,用以衡量电流的大小。电流强度常简称为电流,用符号 i i i表示,单位是安培(其符号为 A A A),即 i ( t ) = d q d t i(t)=\frac{dq}{dt} i(t)=dtdq习惯上把正电荷运动的方向规定为电流的方向。
- 如果电流的大小和方向不随时间变化,则这种电流称为恒定电流,简称直流(简写作dc或DC,可用符号 I I I表示),否则称为时变电流。时变电流的大小和方向都随时间作周期性变化,则称为交变电流,简称交流(alternating current,简写作ac或AC)。
- 在实际问题中,电流的真实方向往往难以在电路图中标出。为了解决这样的困难,引入参考方向。参考方向可以任意选定,在电路图中用箭头表示。我们规定:如果电流的真实方向与参考方向一致,电流为正值;如果两者相反,电流为负值,电流的参考方向又称为电流的正方向。这样就可利用电流的正负值结合着参考方向来表明电流的真实方向。在未标示参考方向的情况下,电流的正负是毫无意义的。
- 电路中a、b两点间的电压(也称电势差)表明了单位正电荷由a点转移到b点时所获得或失去的能量,即 u ( t ) = d w d q u(t)=\frac{dw}{dq} u(t)=dqdw其中 d q dq dq为由a点转移到b点的电量,单位为库仑( C C C); d w dw dw为转移过程中,电荷 d q dq dq所获得或失去的能量,单位为焦耳( J J J)。电压的单位为伏特( V V V)。
- 如果正电荷由a转移到b获得能量,则a点为低电位;如果正电荷由a转移到b失去能量,则a点为高电位。正电荷在电路中转移时电能的得或失表现为电位的升高或降落,即电压升或电压降。
- 如果电压的大小和极性都不随时间而变动,这样的电压就称做恒定电压或直流电压,可用符号 U U U表示。果电压的大小和极性都随时间变化,则称为时变电压,变化为周期性的则称为交流电压。
- 如同需要为电流规定参考方向一样,也需要为电压规定参考极性,电压的参考极性在元件或电路的两端用“+”、“-”符号来表示,“+“号表示高电位端,“-”号表示低电位端。根据公认的规定,当电压为正值时,该电压的真实极性与参考极性相同,也就是a点电位高于b点电位:当电压为负值时,该电压的真实极性与所标的极性相反,也就是b点电位高于a点电位。在未标示电压参考极性的情况下,电压的正负是毫无意义的。电压的参考极性也称为电压的参考方向或正方向。
- 关联的参考方向:电流参考方向与电压参考“+“极到“-”极的方向一致,即电流与电压降参考方向一致,这样,在电路图上就只需标出电流的参考方向和电压的参考极性中的任何一种。
- 信号是指一个用来携带信息的电流或电压。
- 电路中存在着能量的流动,电路中的某一段所吸收或提供能量的速率称为功率,用符号 p p p表示,单位为瓦特(其符号为 W W W)。 p ( t ) = d w d t = d w d q d q d t = u ( t ) i ( t ) p(t)=\frac{dw}{dt}=\frac{dw}{dq}\frac{dq}{dt}=u(t)i(t) p(t)=dtdw=dqdwdtdq=u(t)i(t)我们把能量传输(流动)的方向定为功率的方向。
- 如同把电流、电压作为代数量处理一样,也可为功率假设参考方向,当功率的实际方向与参考方向一致时,功率为正,否则,功率为负。根据规定,功率的参考方向用箭头表示,或是进入、或是离开所研究的电路部分,其指向可任意假定。
- 如果所研究的电路部分,电流、电压的参考方向系关联的,且功率的参考方向系进入该电路部分的,若算得的功率为正,表示功率的实际方向与参考方向一致,亦即该电路部分吸收能量, p p p值即为吸收能量的速率,简称为吸收的功率;若算得的功率为负,表示功率的实际方向与参考方向相反,亦即该电路部分提供能量, p p p值为产生能量的速率,简作提供的功率。一般在计算功率时,毋需标出功率参考方向,默认是进入该电路部分。
- 如果所研究的电路部分,电流、电压的参考方向系关联的,且功率的参考方向系进入该电路部分的,在 t 0 t_0 t0到 t t t的时刻内该部分电路吸收的能量为 w ( t 0 , t ) = ∫ t 0 t p ( ξ ) d ξ = ∫ t 0 t u ( ξ ) i ( ξ ) d ξ w(t_0,t)=\int_{t_0}^{t}p(\xi)d\xi=\int_{t_0}^{t}u(\xi)i(\xi)d\xi w(t0,t)=∫t0tp(ξ)dξ=∫t0tu(ξ)i(ξ)dξ能量的单位为焦耳( J J J)
- 常用的SI单位的倍数单位
因数 原文 中文 符号 1 0 9 10^9 109 giga 吉 G 1 0 6 10^6 106 mega 兆 M 1 0 3 10^3 103 kilo 千 k 1 0 − 3 10^{-3} 10−3 milli 毫 m 1 0 − 6 10^{-6} 10−6 micro 微 μ \mu μ 1 0 − 9 10^{-9} 10−9 nano 纳 n 1 0 − 12 10^{-12} 10−12 pico 皮 p
1-3 基尔霍夫定律
- 若将每个二端元件视为一条支路(branch),这样,流经元件的电流和元件的端电压便分别称之为支路电流和支路电压。支路的连接点称为节点(或结点)(node)。为方便起见,在分析电路时,也可把支路看成是一个具有两个端钮而由多个元件串联而成的组合。电路中的任一闭合路径称为回路(loop)。回路内部不另含有支路的回路称为网孔(mesh)。一般把含元件较多的电路称为电网络(network),在不致引起误解时简称为网络。电路与电网络这两个名词并无明确的区别,一般可以混用。
- 电荷守恒和能量守恒是自然界的基本法则,把它们运用到集总电路就得到电路整体的基本规律,即基尔霍夫定律。
- 基尔霍夫电流定律(KCL):对于任一集总电路中的任一节点,在任一时刻,流出(或流进)该节点的所有支路电流的代数和为零。其数学表示式为 ∑ k = 1 K i k ( t ) = 0 \sum_{k=1}^{K}i_k(t)=0 k=1∑Kik(t)=0其中 i k ( t ) i_k(t) ik(t)为流出(或流进)该节点的第 k k k条支路的电流, K K K为该节点处的支路数。
- 割集是具有下述性质的支路的集合,若把集合的所有支路切割(或移去),电路将成为两个分离部分,然而,只要少切割(或移去)其中的任一条支路,则电路仍然是连通的。
割集就如同两个相互独立的地区之间的公路,其他的公路都是两个地区内部的公路。
- KCL的另一种表达形式:对于任一集总电路的任一割集,在任一时刻,该割集的所有支路电流的代数和为零,流出(或流进)某一分离部分的电流为正。
- 在运用KCL时常需和两套符号打交道:其一是方程中各项前的符号,其正负取决于电流参考方向对节点的相对关系;另一是电流本身数值的正负号,取决于电流的实际方向是否与参考方向一致。
- 基尔霍夫电压定律(KVL):对于任一集总电路中的任一回路,在任一时刻,沿着该回路的所有支路电压降的代数和为零。其数学表达式为 ∑ k = 1 K u k ( t ) = 0 \sum_{k=1}^{K}u_k(t)=0 k=1∑Kuk(t)=0其中 u k ( t ) u_k(t) uk(t)该回路中的第 k k k条支路电压, K K K为该回路中的支路数。
- 求解任意两点间的电压时,常采用双下标记法,下标字母即表示计算电压时所涉及的两点,其前后次序则表示计算电压降时所遵循的方向。
- 在运用KVL时也需和两套符号打交道:方程中各项前的符号,其正负取决于各元件电压降的参考方向与所选的绕行方向是否一致,一致取正号,反之取负号。在以数值代入时,每项电压本身还有符号,取决于电压降的实际方向与参考方向是否一致。
- KCL表达了电路中支路电流间的约束关系,这一规律体现在电路中的各个节点上。KVL表达了电路中各支路电压之间必须遵守的规律,这一规律体现在电路的各个回路中。
- 支路电流间和支路电压间的约束关系系与构成电路的元件性质无关,因此,在研究这些约束关系时可以直接用一线段来代替电路中的每一个元件,这线段称为支路,线段的端点称为节点,这样得到的几何结构图称为图形或称为图(graph),用 G G G表示。更准确地说,图是一组节点和一组支路的集合,支路只在节点处相交。如果对图中的每一支路规定关联参考方向,则所得的图就称为定向图(directed graph)(也称有向图)。如果在图G的任意两节点间至少存在着一条由支路构成的路径,则图G就称为连通图(connected graph),否则,就称为非连通图。
1-4 特勒根定理
- 特勒根定理与KCL、KVL三者的关系是:由任何两者可推导出另一个。
- 特勒根定理形式一(功率定理):设集总电路具有 b b b个元件, n n n个节点,并设 u 1 u_1 u1、 u 2 u_2 u2、 … \dots …、 u b u_b ub为满足KVL的各个电压, i 1 i_1 i1、 i 2 i_2 i2、 … \dots …、 i b i_b ib,为满足KCL的各个电流,各元件的电压、电流为关联参考方向,则 ∑ k = 1 b u k i k = 0 \sum_{k=1}^bu_ki_k=0 k=1∑bukik=0即电路各元件吸收功率的代数和为零一一功率守恒。
- 特勒根定理形式二(似功率定理)
∑ k = 1 b u k ( t ) i ^ k ( t ) = 0 ∑ k = 1 b u ^ k ( t ) i k ( t ) = 0 ∑ k = 1 b u k ( t 1 ) i k ( t 2 ) = 0 ∑ k = 1 b u k ( t 2 ) i k ( t 1 ) = 0 \begin{align} \sum_{k=1}^bu_k(t)\hat{i}_k(t)=0 \tag{1a} \\ \sum_{k=1}^b\hat{u}_k(t)i_k(t)=0 \tag{1b} \\ \sum_{k=1}^bu_k(t_1)i_k(t_2)=0 \tag{2a}\\ \sum_{k=1}^bu_k(t_2)i_k(t_1)=0 \tag{2b} \end{align} k=1∑buk(t)i^k(t)=0k=1∑bu^k(t)ik(t)=0k=1∑buk(t1)ik(t2)=0k=1∑buk(t2)ik(t1)=0(1a)(1b)(2a)(2b)
(1)式是针对两个结构完全相同,且支路参考方向也设定一致的定向图来说的,它们的具体元件和参数不必完全相同;(2)式则是针对同一定向图在不同时刻的工作状态。