1.1 因果性和集总参数、线性系统

本文探讨了连续时间和离散时间系统的概念,重点在于因果性和集总参数在控制系统中的作用。因果系统是现实世界中物理系统的必要条件,其当前输出受过去输入的影响。状态变量的概念被引入来概括过去的输入对输出的影响,使得有限状态变量的系统称为集总参数系统。线性系统的特性,包括齐次性和叠加性,也进行了阐述,同时提出了零输入响应和零状态响应的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如果一个系统接受连续时间信号作为输入,并产生连续时间信号作为它的输出,那么它就被称为连续时间系统。单个输入用小写斜体 u ( t ) u\left( t \right) u(t) 表示,多个输入用黑体 u ( t ) \mathbf{u}\left( t \right) u(t)表示。如果系统有 p p p个输入,则 u ( t ) \mathbf{u}\left( t \right) u(t)是一个 p × 1 p×1 p×1向量或 u = [ u 1 u 2 ⋯ ] ′ \mathbf{u}=\left[ \begin{matrix} u_1& u_2& \cdots\\ \end{matrix} \right] ' u=[u1u2]。类似地,输出将表示为 y ( t ) y\left( t \right) y(t) y ( t ) \mathbf{y}\left( t \right) y(t)。假定时间 t ∈ [ − ∞ , + ∞ ] t\in \left[ -\infty ,+\infty \right] t[,+]
如果一个系统输入是离散时间信号,并产生离散时间信号输出,那么它就被称为离散时间系统。系统中所有的离散时间信号都假定具有相同的采样周期T。输入输出表示为 u [ k ] : = u ( k T ) u[k]:= u(kT) u[k]:=u(kT) y [ k ] : = y ( k T ) y[k]:= y(kT) y[k]:=y(kT),其中 k k k为离散时间采样序列,是一个在 − ∞ −\infty + ∞ +\infty +之间的整数。对于多个输入和多个输出,字母写成粗体。

因果性和集总参数

如果一个系统的输出 y ( t 0 ) y(t_0) y(t0)只取决于 t 0 t_0 t0时刻的输入,那么这个系统就被称为无记忆系统;它与 t 0 t_0 t0之前或之后的输入无关。比如只有电阻组成的网络是无记忆系统。
然而,大多数系统都有记忆。也就是说 t 0 t_0 t0时刻的输出取决于 t 0 t_0 t0之前(过去)、 t 0 t_0 t0(当前)、 t 0 t_0 t0之后(未来)时刻的输入。
如果一个系统的当前输出依赖于过去和当前的输入,而不是未来的输入,那么这个系统就被称为因果系统或非预期系统。如果一个系统没有因果关系,它当前的输出将取决于未来的输出。换句话说,一个非因果系统可以预测将来会发生什么。实际上没有一个物理系统具有这样的能力。因此,每个物理系统都是因果关系,而因果关系是一个系统在现实世界中成立的必要条件。我们只研究因果系统。
因果系统当前的输出受到过去输入的影响。那过去的输入会对当前的输出产生多大的影响?一般来说,时间应该一直回溯到负无穷。换句话说,从 − ∞ −\infty 到时间 t t t的输入对 y ( t ) y(t) y(t)有影响。但是我们无法做到从 t = − ∞ t=−\infty t=开始跟踪 u ( t ) u(t) u(t),因此有了 状态(state) 这个概念。

定义:系统在 t 0 t_0 t0时刻的状态 x ( t 0 ) x(t_0) x(t0) t 0 t_0 t0时刻系统内部的信息,它与 t ≥ t 0 t\ge t_0 tt0时的输入 u ( t ) u(t) u(t)一起,唯一地确定了所有 t ≥ t 0 t\ge t_0 tt0时的输出 y ( t ) y(t)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值