【高等数学】第三章 微分中值定理与导数的应用——第二节 洛必达法则

上一节【高等数学】第三章 微分中值定理与导数的应用——第一节 微分中值定理
总目录【高等数学】 目录

1. 未定式

如果当 x → a x \to a xa(或 x → ∞ x \to \infty x )时,两个函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x) 都趋于零或都趋于无穷大,那么极限 lim ⁡ x → a ( x → ∞ ) f ( x ) F ( x ) \lim\limits_{\substack{x \to a \\(x \to \infty)}} \dfrac{f(x)}{F(x)} xa(x)limF(x)f(x) 可能存在、也可能不存在. 通常把这种极限叫做未定式,并分别简记为 0 0 \dfrac{0}{0} 00 ∞ ∞ \dfrac{\infty}{\infty} .

2. 自变量趋于有限值时的 0 0 \dfrac{0}{0} 00型未定式

  • 自变量趋于有限值时的 0 0 \dfrac{0}{0} 00型未定式
    (1) 当 x → a x \to a xa 时,函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x) 都趋于零;
    (2) 在点 a a a 的某去心邻域内, f ′ ( x ) f'(x) f(x) F ′ ( x ) F'(x) F(x) 都存在且 F ′ ( x ) ≠ 0 F'(x) \neq 0 F(x)=0
    (3) lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim\limits_{x \to a} \dfrac{f'(x)}{F'(x)} xalimF(x)f(x) 存在(或为无穷大),

    lim ⁡ x → a f ( x ) F ( x ) = lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim\limits_{x \to a} \dfrac{f(x)}{F(x)} = \lim\limits_{x \to a} \dfrac{f'(x)}{F'(x)} xalimF(x)f(x)=xalimF(x)f(x)

    根据条件(1),以及柯西中值定理的需要,可以定义 f ( a ) = F ( a ) = 0 f(a)=F(a)=0 f(a)=F(a)=0,而不影响 x → a x\to a xa的相关极限过程,由此结合条件(2),根据柯西中值定理:
    f ( x ) F ( x ) = f ( x ) − f ( a ) F ( x ) − F ( a ) = f ′ ( ξ ) F ′ ( ξ ) ( ξ 在 x 与 a 之间 ) \dfrac{f(x)}{F(x)}=\dfrac{f(x)-f(a)}{F(x)-F(a)}=\dfrac{f'(\xi)}{F'(\xi)}(\xi在x与a之间) F(x)f(x)=F(x)F(a)f(x)f(a)=F(ξ)f(ξ)(ξxa之间)
    x → a , ξ → a x\to a,\xi\to a xa,ξa,结合条件(3)即可完成证明
    对于条件(3)中无穷大的情形,有
    0 < ∣ ξ − a ∣ < ∣ x − a ∣ < δ , ∣ f ′ ( ξ ) F ′ ( ξ ) ∣ > K    ⟹    ∣ f ( x ) F ( x ) ∣ > K 0 < |\xi - a| < |x - a| < \delta,|\dfrac{f'(\xi)}{F'(\xi)}| > K \implies |\dfrac{f(x)}{F(x)}| > K 0<ξa<xa<δ,F(ξ)f(ξ)>KF(x)f(x)>K
    如果条件(3)中的极限是发散的, lim ⁡ x → a f ( x ) F ( x ) \lim\limits_{x \to a} \dfrac{f(x)}{F(x)} xalimF(x)f(x)有可能发散,也有可能收敛,比如 lim ⁡ x → ∞ x + sin ⁡ x x \lim\limits_{x\to\infty}\dfrac{x+\sin x}{x} xlimxx+sinx收敛。

  • 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的值的方法称为洛必达(L’Hospital)法则.
  • 如果 lim ⁡ x → a f ′ ( x ) F ′ ( x ) \lim\limits_{x \to a} \dfrac{f'(x)}{F'(x)} xalimF(x)f(x)依然是 0 0 \dfrac{0}{0} 00型未定式,但是满足洛必达法则的条件,可以继续使用洛必达法则

3. 自变量趋于无穷大时的 0 0 \dfrac{0}{0} 00型未定式

(1) 当 x → ∞ x \to \infty x 时,函数 f ( x ) f(x) f(x) F ( x ) F(x) F(x) 都趋于零;
(2) 当 ∣ x ∣ > N |x| > N x>N f ′ ( x ) f'(x) f(x) F ′ ( x ) F'(x) F(x) 都存在,且 F ′ ( x ) ≠ 0 F'(x) \neq 0 F(x)=0
(3) lim ⁡ x → ∞ f ′ ( x ) F ′ ( x ) \lim\limits_{x \to \infty} \dfrac{f'(x)}{F'(x)} xlimF(x)f(x) 存在(或为无穷大),

lim ⁡ x → ∞ f ( x ) F ( x ) = lim ⁡ x → ∞ f ′ ( x ) F ′ ( x ) \lim\limits_{x \to \infty} \dfrac{f(x)}{F(x)} = \lim\limits_{x \to \infty} \dfrac{f'(x)}{F'(x)} xlimF(x)f(x)=xlimF(x)f(x)

4. 其他类型的未定式

  • 其他类型的未定式可以转换为上述2种 0 0 \dfrac{0}{0} 00型未定式处理,或者参照上述2种 0 0 \dfrac{0}{0} 00型未定式的洛必达法则的证法得出本未定式的洛必达法则
  • 洛必达法则是求未定式的一种有效方法,但最好能与其他求极限的方法结合使用. 例如能化简时应尽可能先化简,可以应用等价无穷小替代或重要极限时,应尽可能应用,这样可以使运算简捷.

下一节【高等数学】第三章 微分中值定理与导数的应用——第三节 泰勒公式
总目录【高等数学】 目录

内容概要:本文详细介绍了一个基于秃鹰搜索算法(BES)优化最小二乘支持向量机(LSSVM)的多特征分类预测项目,涵盖从理论原理、模型架构、代码实现到GUI界面设计的完整流程。项目通过BES算法自动优化LSSVM的关键参数(如正则化参数C和核函数参数gamma),提升模型在高维、多特征数据下的分类精度泛化能力。结合特征工程、交叉验证、数据增强等技术,有效应对过拟合参数调优难题,并通过混淆矩阵、ROC曲线、t-SNE可视化等多种方式实现结果解释模型评估。项目还提供了完整的目录结构、模块化代码封装、并行计算支持及可扩展的部署架构,适用于金融风控、医疗诊断、工业故障检测等多个领域。; 适合人群:具备一定Python编程基础和机器学习知识的研发人员、数据科学家及工程技术人员,尤其适合从事智能算法开发、模型优化实际工程落地的相关从业者;工作年限建议在1-5年之间。; 使用场景及目标:①在高维多特征数据场景中实现高精度分类预测;②解决传统LSSVM人工调参困难的问题,实现参数自动寻优;③构建可解释、可可视化、可部署的智能分类系统,支持金融、医疗、工业等领域的智能决策应用;④学习如何将智能优化算法(如BES)经典机器学习模型(如LSSVM)融合并实现端到端项目开发。; 阅读建议:建议读者结合文中提供的完整代码进行实践操作,重点关注BES优化算法的实现逻辑、LSSVM的训练流程以及GUI界面的集成方式。在学习过程中,可尝试更换数据集、调整参数范围或引入其他优化算法进行对比实验,以深入理解模型性能变化机制。同时,建议关注项目部署可扩展性设计,为后续工程化应用打下基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值