Finding Order in Chaos: A Novel Data Augmentation Method for Time Series in Contrastive Learning

系列文章目录

在混沌中寻找秩序:对比学习中时间序列的一种新颖的数据增强方法 NeurIPS 2023



摘要

众所周知,对比学习的成功取决于数据增强。 尽管通过在视觉等某些领域利用预定义技术可以很好地控制数据增强的程度,但由于数据生成机制的复杂性(例如复杂的机制),时间序列数据增强的探索较少,并且仍然是一个具有挑战性的问题 参与心血管系统。 此外,还没有广泛认可的通用时间序列增强方法可以应用于不同的任务。 在本文中,我们提出了一种用于准周期时间序列任务的新型数据增强方法,旨在将类内样本连接在一起,从而在潜在空间中找到顺序。 我们的方法建立在众所周知的混合技术的基础上,通过结合一种新颖的方法来解释非平稳时间序列的周期性。 此外,通过控制数据增强产生的混乱程度,我们的方法可以改进下游任务的特征表示和性能。 我们在三个时间序列任务上评估我们提出的方法,包括心率估计、人类活动识别和心血管疾病检测。 针对最先进方法的大量实验表明,所提出的方法在这三个任务中优于最佳数据生成和已知数据增强技术的先前工作,反映了所提出方法的有效性。 源代码:https://github.com/ethsiplab/Finding_Order_in_Chaos。


提示:以下是本篇文章正文内容

一、引言

自监督学习方法受到了极大的关注,因为它们能够在没有明确注释的情况下从原始数据中发现有意义的表示。 这些自监督方法通过设计借口任务来学习没有标签的表示,将无监督表示学习问题转化为监督问题,例如预测图像 [1] 或上下文 [2, 3] 的旋转。 在这些方法中,对比学习(CL)能够学习区分语义上相似的例子和不相似的例子,它是跨多个领域的自我监督学习的强大方法,包括计算机视觉[4-6]、语音识别[7-10]、 和自然语言处理[11-14]。

对比学习的成功依赖于相似和不相似示例的创建,这通常是通过使用数据增强来实现的[15, 16]。 最近,研究表明,数据增强可以在不同的类内样本之间制造“混乱”,从而使它们变得更加相似。 例如,当两辆不同的汽车都被裁剪到车轮时,它们会变得非常相似。 [17]。 然而,在时间序列数据中,由于动态数据生成机制的复杂性,使用增强技术创建相似的样本更具挑战性[18]。 此外,时间序列对比学习的研究表明,缺乏一种独特的数据增强技术能够在不同的任务中始终比其他技术表现更好[19, 20]。 相反,增强的选择取决于信号的上下文特征,例如扰动低频中携带特征信息的信号的高频内容不会生成有助于对比学习学习类不变特征的有用数据样本 [21]。

考虑到这些限制,在这项工作中,我们首先提出了一种新颖的时间序列数据数据增强方法,通过执行定制的混合,同时将相位和幅度信息视为两个单独的特征。 然后,我们对这两个特征执行特定操作,通过控制每个特征的混合系数来生成正样本,以防止激进的增强。 具体来说,我们的方法采用了一种技术,根据潜在空间中的距离来控制每个随机选择对的混合比率,该距离是通过使用变分自动编码器(VAE)获得的,其目标是学习没有标签的数据的解缠结表示 。 为此,在潜在空间中的距离约束下,混合尝试更积极地将语义上更接近的样本连接在一起,同时防止可能属于不同类的不同样本的过度插值。 因此,我们提出的准周期时间序列数据增强方法的目的是找到不同样本之间“混乱”的顺序,以便通过以新颖的方式对它们进行插值来防止信息丢失,从而使它们变得更加相似。 我们的贡献总结如下:

• 我们提出了一种针对非平稳准周期时间序列数据的新颖混合方法,通过将相位和幅度视为两个单独的特征来生成增强类内相似性并帮助对比学习来学习类分离表示的样本。
• 我们提出了一种新颖的方法,根据潜在空间中的相似性对每对混合系数进行采样,该方法是在学习解缠结表示的同时在没有监督的情况下构建的,以防止样本之间的激进增强。
• 我们表明,与先前的混合技术和提出的生成最佳/硬正值或负值的增强方法相比,带有系数采样的定制混合持续提高了三个时间序列任务中对比学习的性能。

二、Preliminaries

2.1 Notation

我们使用小写符号 (x) 表示标量,粗体小写符号 (x) 表示向量值,大写字母 (X) 表示随机变量。 具有参数映射族的函数表示为 f θ ( . ) f_{\theta}(.) fθ(.),其中 θ 是参数。 实值时间序列样本的离散傅立叶变换表示为 F(.),产生复变量 X k \mathrm{X}_{\mathrm{k}} Xk,其中 X ∈ C 且 k ∈ [ 0 , f s / 2 ] \begin{aligned}k\in[0,f_s/2]\end{aligned} k[0,fs/2]是奈奎斯特率最大值的频率。 F(x)的幅度和相位表示为A(x)和P(x)。 复变量的实部和虚部显示为 Re(.) 和 Im(.)。 详细的运算计算见附录A.1。

2.2 Setup

我们遵循如下常见的 CL 设置。 给定数据集 D = { ( x i ) } i = 1 K \mathcal{D}=\{(\mathbf{x}_i)\}_{i=1}^K D={(xi)}i=1K,其中每个 x i x_i xi 由长度为 L 和 C 通道的实值序列组成。 目标是训练一个学习器 f θ f_{\theta} fθ,它试图学习一个不变的表示,这样当它在数据集 D l = { ( x i , y i ) } i = 1 M \mathcal{D}_{l}=\{(\mathbf{x}_{i},\mathbf{y}_{i})\}_{i=1}^{M} Dl={(xi,yi)}i=1M上进行微调时,M ≪K 且 y i ∈ { 1 , … , N } \mathbf{y}_i\in\{1,\ldots,N\} yi{1,,N},它可以将不同类别的样本分开。

2.3 Motivation

正如先前的工作所述,基于混合的方法在数据具有非固定拓扑的领域(例如树、图和语言)性能较差[22, 23]。 在这里,我们展示了如何通过从理论上揭示时间序列混合的局限性,同时考虑时间依赖性和非平稳性来推导我们提出的方法。

假设 2.1(SNR 很重要)。 存在一个或多个感兴趣的带限频率范围 f*,其中平均原始时间序列数据传达的有关标签的信息(即 I ( y ; x ) ) \mathcal{I}(\mathbf{y};\mathbf{x})) I(y;x))与该频率范围内的归一化信号功率成正比,如等式所示 1.
在这里插入图片描述
假设 2.1 指出时间序列的信息取决于其信噪比 (SNR)。 先前的工作表明,特定频段包含有关时间序列特征的固有信息,这有助于分类[21, 24]。

假设2.2。 对于给定的数据分布 D = { x k } k = 1 K , \{\mathbf{x}_k\}_{k=1}^K, {xk}k=1K,,真正的底层生成过程 f(.) 是准周期的,即 f ( x + τ ) = g ( x , f ( x ) ) , f(\mathbf{x}+\tau)=g(\mathbf{x},f(\mathbf{x})), f(x+τ)=g(x,f(x)),,其中 τ 可以 可以是固定的,也可以是变化的。

假设 2.2 假设分布 D 中的观测数据样本是由准周期函数生成的。 这是一个最小的假设,因为准周期性是周期函数的松弛版本。 简单地说,准周期性可以描述为观察到的信号在小范围内表现出周期性,而在较大范围内则不可预测。 而且,之前的几项工作表明,现实世界中多种应用的时间序列数据的数据生成机制是准周期的[25-30]。 因此,假设2.2是现实的。

命题 2.3(破坏性混合)。 如果假设 2.1 和 2.2 成立,则存在 λ ∼ B e t a ( α , α ) \lambda\sim Beta(\alpha,\alpha) λBeta(α,α) λ ∼ U ( β , 1.0 ) \lambda\sim U(\beta,1.0) λU(β,1.0)且 β 值较高,因此当使用线性混合技术时,增强样本分布的互信息下界会减小 为零。
在这里插入图片描述
证明可以在附录A中找到。该命题表明,虽然增强样本主要来自具有高比率的锚样本(x),但所得实例可能不包含任何与任务相关的信息。 换句话说,增强过程可能会丢弃整个特定于任务的信息。 这种对准周期数据的混合破坏性行为可以归因于干涉现象,其中两个波根据相位差相互作用形成较低或较高振幅的合成波,如命题2.3所示。

三、方法

我们引入了一种新颖的方法来克服混合的局限性,将正弦信号的幅度和相位视为具有不同行为的两个不同特征。 随后,我们考虑到每个特征的具体特征和效果,对它们应用定制的混合操作。

我们对每个正弦曲线的幅度进行线性混合。 然而,对于相位,我们采取不同的方法,通过在另一个样本的方向上向锚点相位添加一个小值,将两个相干信号的相位分量结合在一起。 混合操作执行特征的线性插值[31],然而,两个复变量的插值可能会导致一个复变量的相位和幅度与这两个完全不同/远离,即,混合可以是破坏性外推,而不是 特征插值。 因此,我们将两个正弦波的相位混合如下。 我们首先计算两个样本之间的最短相位差,表示为 Δθ,如公式 31 中所述。
在这里插入图片描述
计算出的相位差的符号提供了有关另一个样本在相量图中顺时针或逆时针方向的相对相位位置的信息。 并且,它的绝对值代表两个样本之间以弧度为单位的最短角度差。 基于计算出的两个样本之间的相位差,我们执行混合操作来生成不同的正样本,如方程4所示,使得增强实例的相位和幅度根据锚样本x正确插值,而不会造成任何破坏性干扰。

在这里插入图片描述
所提出的方法通过定制操作混合每个频率分量的幅度和相位,不仅可以防止时间序列之间的相消干扰,导致互信息下界的增加(如定理3.1所示),而且还可以生成多样化的增广 通过使用两个不同的混合系数来获得具有相同两个样本的实例。
在这里插入图片描述
图 1:线性混合 a) 和建议混合 b) 的相量表示。 锚点、随机选择的样本和生成的实例分别表示为 x , x ~ ,   a n d   x + \mathbf{x},\mathbf{\tilde{x}},\mathrm{~and~}\mathbf{x}^{+} x,x~, and x+

定理 3.1(混合的保证)。 在假设 2.1 和 2.2 下,给定任何 λ ε (0, 1],增强实例的互信息下界由采样的 λ 和锚 x 决定。
在这里插入图片描述

我们在图 1 中提供了直观的演示,并在附录 A 中提供了详细的数学证明。我们的方法还根据对混合过程的敏感性以及增强程度,在选择相位和幅度的混合系数方面提供了更大的灵活性 对于每个随机选择的对。 由于增强程度对于对比学习至关重要,因此在某些情况下,增强要么太弱(类内特征无法聚集在一起),要么太强(类间特征也可能崩溃到同一点)并导致 次优结果[17]。 为了缓解这个问题并找到增强程度的顺序,我们搜索语义上更接近的样本对,这意味着它们更有可能属于同一类。 然后,我们对这些对更积极地执行建议的混合,创建更接近和多样化的样本,同时降低不太相似的对的增强强度。 为了找到没有标签的相似样本,我们训练了一个完全无监督的 β-VAE [32],它将数据点映射到潜在空间,这样如果两个随机样本在潜在空间中接近,则它们在语义上相似,如命题 3.2 所示。

命题 3.2(潜在空间的一致性[33])。 给定一个训练有素的无条件 VAE,编码器 E(.) 生成分布 p E ( z ∣ x ) p_{E}(\mathbf{z}|\mathbf{x}) pE(zx),解码器 D(.) 生成分布 q D ( x ∣ z ) q_D(\mathbf{x}|\mathbf{z}) qD(xz),而 z 的先验为 p(z), 令 z 1 z_1 z1 和 $z_2 $为两个不同真实样本 x1 和 x2 的两个潜在向量,即 E ( x 1 ) = z 1   and   E ( x 2 ) = z 2 . E(\mathbf{x_1})=\mathbf{z_1}\textit{ and }E(\mathbf{x_2})=\mathbf{z_2}. E(x1)=z1 and E(x2)=z2.。 如果距离 d ( z 1 , z 2 ) ≤ δ , d(\mathbf{z_1},\mathbf{z_2})\leq\delta, d(z1,z2)δ,,则 D ( z 1 ) D(\mathbf{z_1}) D(z1) D ( z 2 ) D(\mathbf{z_2}) D(z2) 将具有与公式 6 类似的语义标签。

在这里插入图片描述
其中 ϵ 代表可容忍的语义差异,δ 是保持语义一致性的最大距离,d(.) 是距离度量,例如两个向量之间的余弦相似度。

如果两个随机选择的样本在语义上更接近,上面的定理 3.1 命题会激励我们积极地执行增强。 因此,如果潜在向量之间的距离低于阈值,我们从均匀分布 λ A , λ P ∼ U ( β , 1.0 ) \lambda_{A},\lambda_{P}\sim U(\beta,1.0) λA,λPU(β,1.0) 中对相位和幅度的混合系数进行采样,其中 β 值较低,否则,它们是从 具有高均值和低标准差的截断正态分布 λ A , λ P ∼ N t ( μ , σ , 1.0 ) \lambda_A,\lambda_P\sim\mathcal{N}^t(\mu,\sigma,1.0) λA,λPNt(μ,σ,1.0)

四、 Experiments

我们对所提出的方法进行了实验,并将其与对比学习设置中的其他混合方法或最优/硬正样本生成进行比较。 在我们的实验中,我们使用 SimCLR [15] 框架,没有专门的架构或内存库来对所有基线进行公平的比较。 其他 CL 框架的结果可以在附录 E 中找到。附录 D 中提供了数据集和基线的完整训练细节和超参数设置。

4.1 数据集

我们对来自三项任务的八个数据集进行了广泛的实验,其中包括惯性测量 (IMU) 的活动识别、光电体积描记法 (PPG) 的心率预测以及心电图 (ECG) 的心血管疾病分类。 我们在下面提供了每个数据集的简短描述,更多详细信息和指标可以在附录 B 中找到。

活动识别 我们使用 UCIHAR [34]、HHAR [35] 和 USC [36] 进行活动识别。 在评估过程中,我们评估对比模型的跨人泛化能力,即在以前未见过的目标域上评估模型。 我们遵循 GILE [37] 中的设置,将每个人视为单个域,而微调数据集比无监督数据集小得多。

心率预测我们使用2015年的IEEE信号处理杯(IEEE SPC)[38]和DaLia[39]进行基于PPG的心率预测。 SPC 提供两个数据集,一个数据集较小,伪影较少(称为 SPC12)[38],另一个数据集较大,参与者较多,包括剧烈运动(称为 SPC22)。 与之前的研究一致,我们采用了留一会话(LOSO)交叉验证,其中涉及对未用于预训练和微调的主题或会话的方法进行评估。

心血管疾病(CVD)分类我们在2018年中国生理信号挑战赛(CPSC2018)[40]和查普曼大学绍兴人民医院(Chapman)心电图数据集[41]上进行了实验。 我们选择了与[42]中相同的四个特定线索,同时将每个数据集视为单个域,其余数据集的一小部分用于微调预训练模型。 我们根据患者分割数据集进行微调和测试(每个患者的记录仅出现在一组中)。

4.2 基线

与现有混合技术的比较我们通过与其他常用的混合方法进行比较来评估我们提出的混合的有效性,包括 Linear-Mixup [31]、BinaryMixup [43]、Geometric-Mixup [22]、Cut-Mix [44]、 幅度混合 [45] 和规格混合 [46]。 当我们比较混合技术的性能时,我们遵循与[47]相同的框架,其中混合操作的样本仅发生在当前批次样本中。 并且,混合样本与锚点配对,即无需第二次应用混合,以进行对比预训练。

与最佳样本生成方法的比较我们通过将其与对比学习设置中的其他数据生成方法和基线进行比较,同时考虑先前已知的增强技术,来评估我们提出的方法的性能。 时间序列的传统数据增强[19],例如重采样、翻转、添加噪声等。InfoMin 利用对抗性训练策略来减少样本之间的互信息,同时最大化 NCE 损失[48]。 NNCLR [49],它使用学习的表示空间中的最近邻作为正样本。 正特征外推[50],通过特征外推创建硬正例。 GenRep 使用生成模型的潜在空间通过采样附近的潜在向量来生成相同语义内容的“视图”[51]。 Aug. Bank [21],提出了一种增强库,可以在有限的预算下操纵样本的频率分量。 STAug [52],它结合了频谱和时间增强,使用经验模式分解和线性混合来生成样本。 DACL [22],通过混合隐藏表示来创建正样本。 IDAA [53],这是一种对抗性方法,通过使用 VAE 将数据修改为硬阳性,而不扭曲有关其原始身份的关键信息。 附录 C 中给出了每个基线的更多实施细节。

4.3 实施

我们使用卷积网络与基于 LSTM 的网络的组合,该网络在许多时间序列任务中表现出卓越的性能 [19,54,55],作为编码器 fθ(.) 的主干,其中投影仪是两个完全连接的层。 我们使用 InfoNCE 作为损失,使用 Adam 进行优化,学习率为 0.003。 我们使用 256 的批量大小进行 120 个 epoch 的训练,并使用余弦衰减时间表衰减学习率。 预训练后,我们使用相同的超参数对从冻结的预训练网络中提取的特征训练单个线性层分类器,即线性评估。 报告的结果是同一分组中使用不同种子的三个独立运行的平均值和标准偏差值。 附录 D 中给出了有关经过训练的 VAE 的实现、架构和超参数的更多详细信息。

五、 结果与讨论

表 1、表 2 和表 3 展示了我们提出的方法与在八个数据集中的三个任务的对比学习设置中生成最优/硬正样本的最先进方法的结果。 此外,图 2 将我们的方法与之前的混合方法(例如线性混合、剪切混合)进行了比较,而没有应用任何其他附加的增强技术。 总体而言,我们提出的方法在七个数据集中表现出了比其他方法更优越的性能,在其余数据集中表现第二好,并且性能差距较小。

表 1:我们的工作与之前的工作在活动识别数据集中的性能比较

在这里插入图片描述
在这里插入图片描述
从这些表中,我们可以看到,我们提出的方法显着优于 DACL,后者建议通过在中间层中混合固定隐藏表示来创建正样本 [22],大幅提高(高达 20.8%,平均 10.1%) 活动识别)。 这表明,当表示在对比训练过程开始时尚未线性可分时,使用混合的插值表示可能与实际插值样本不同,并且可能无法捕获其底层特征。 我们的实验得出的一个有趣的结果是,IDAA [53] 在某些数据集中表现出与我们的方法相当的性能,甚至在活动识别的 HHAR 数据集中稍微优于我们的方法。 尽管使用不同的方法来生成正实例,即对抗性和混合,但我们的方法和 IDAA 算法在 CL 设置中的正实例生成方法方面具有相似之处。 IDAA 算法的目的是在不改变样本身份的情况下创建位于类边界附近的硬正样本,而我们的方法对两个样本进行插值以产生与原始样本相似的正样本,同时向样本中的相位和幅度添加噪声。 随机选择样本的方向。 换句话说,这两种方法都试图在生成新的阳性实例时采取特殊的预防措施来保持样本身份的完整性,这可以解释它们在我们的实验中的相似表现。

表 2:我们与之前的心率预测数据集的性能比较
在这里插入图片描述
整个数据集(不包括测试)均与标签一起使用,而在 DCL 中,标记数据大小与 CL 匹配

相比之下,在生成样本或隐藏表示时不优先考虑保留样本身份的方法通常表现出平均性能次优,同时表现出跨任务的可变性增加。

此类方法的示例包括 PosET [50](它生成硬正样本以通过外推特征来改进对比学习)、STAug [52](将经验模式分解与线性混合技术结合使用)以及 InfoMin [48](试图最小化相互之间的差异)。 以对抗的方式在两个实例之间传递信息。 先前混合技术与我们提出的混合技术的性能比较如图 2 所示。平均而言,我们提出的方法优于所有其他混合技术,同时减少了任务之间的方差。 该图有趣的是,虽然线性[31]和幅度混合[45]在一些活动识别数据集中达到了我们的方法,但对于其他两个任务,线性混合的性能大幅下降,而幅度混合提供了合理的性能 。 这一经验结果支持了我们关于混合破坏性影响的初始定理,该定理表明线性混合或其他导数可以丢弃准周期信号生成的正样本中的整个任务特定信息,即使混合系数是从这样的分布中采样的 生成的样本更接近锚点。
表 3:我们的成果与之前的 CVD 工作之间的性能比较。
在这里插入图片描述

5.1 消融研究

在这里,我们对我们提出的方法及其组件对性能的影响进行了全面的检查。 主要是,我们通过将实例选择算法应用于线性混合(w/o Prop. Mixup)来研究所提出的混合的效果。 然后,我们使用常数 λA 和 λP 系数执行我们提出的混合,而不调查对之间的潜在空间距离(w/o Aug. Degree)。 表 4、5 和 6 总结了结果。 表中的第二行显示了未应用所提出的混合方法时的性能,同时根据线性混合的潜在空间中的距离选择混合系数。 最后一行说明了在对相位和幅度应用定制混合时随机采样混合系数而导致的性能变化,而不考虑所选对之间的任何关系。

在这里插入图片描述
图 2:混合方法的比较,其中误差线代表随机种子之间的偏差(附录 E 中给出了明确的数字)。 a) 显示活动识别的性能,b) 用于心率预测,最后 c) 显示 CVD 分类。 对于最后两项任务,我们排除了 Geomix,因为它的性能极差并且扭曲了 y 轴比例。

表 4:在活动识别数据集中对建议的混合与系数选择进行消融
在这里插入图片描述
消融研究获得的结果支持了之前的主张和结果。 例如,当应用线性混合而不是用于心率预测的建议混合技术时(表 5,无 Prop. Mixup),与在不考虑距离的情况下对系数进行采样的情况相比,性能下降显着。 潜在空间(表 5,无八月度)。 这一观察结果表明,随着数据周期性的增加,线性混合可能会导致显着的破坏性干扰,而我们的方法可以有效地防止此类问题。

表 5:心率预测数据集中建议的混合与系数选择的消融。
在这里插入图片描述
虽然我们的混合技术持续增强了跨数据集的性能,但当根据两个数据集的潜在空间中的距离对混合系数进行采样时,我们观察到性能下降。 此外,与所提出的混合相比,通过基于距离的采样系数获得的性能提升相对较低。 有几个因素可以解释这一观察结果。 首先,由于每个类别的数据大小有限,VAE 可能没有得到很好的训练,即命题 3.2 中的假设不成立。 这可能导致潜在空间的语义相似性不一致,使得潜在空间中的两个接近的样本可能具有不同的标签。 其次,如果下游任务的类数量增加,则批量采样类内样本的概率会降低,导致性能缺乏提升。 因此,在未来的研究中,对准周期时间序列数据使用不同的距离度量可能是有益的,这样它可以在考虑到大数据集缺乏的情况下随着类的数量进行扩展。
表 6:CVD 中建议的混合与系数选择的消融。
在这里插入图片描述关于不同自监督学习框架(如 BYOL [59])中混合系数和性能的敏感性的更多消融研究可以在附录 E.1 和 E.2 中找到。 并且,附录 E.3 中给出了关于我们是否仍然需要已知数据增强的调查。 附录 F 中可以找到直观地展示线性混合的负面影响以及我们提出的防止此问题的混合技术的示例。附录 G 中给出了监督学习范式中定制混合性能的比较结果。

六、 相关工作

对比学习的目标是对比正负对[60]。 换句话说,嵌入空间由两种力控制,即正对的吸引力和负对的排斥,通过对比损失实现[61]。 由于在训练期间无法获得标签信息,因此使用增强技术对单个样本生成正对,而负对是从整个数据集中随机采样的。 因此,正负样本的选择或生成在对比学习的成功中起着关键作用[62-65],并且两种方法,即正/负对的生成/选择,都已在文献中进行了彻底的研究[66-71] ],我们限制了对与数据增强技术相关的先前工作的讨论,这些技术创建没有标签的最佳或硬样本。

基于对抗性的方法越来越多的文献研究了通过对正样本和负样本使用对抗训练来生成样本[48,72,73]。 关于 CL 中增强的重要性的开创性工作 InfoMin 提出了一种对抗性训练策略,其中玩家尝试使用 NCE 损失来最小化和最大化互信息 [48]。 CLAE 是最早利用对抗性方法的作品之一,它表明对抗性训练会产生具有挑战性的正负对[72]。 最近的另一项研究提出了一种对抗性方法,通过利用 VAE 的身份解缠结特征来生成硬样本,同时保留原始样本身份[53]。 然而,对抗性增强可能会由于过度的扰动而改变原始样本的身份,并且调整每个样本的攻击强度以保持身份是不可行的。 换句话说,这些方法不考虑样本特定的特征,并对所有样本使用恒定的扰动系数,而我们提出的方法考虑对之间的相似性并相应地调整混合系数。

基于混合的方法最近在对比学习中探索了基于混合的方法[22,71,47,74,75]。 根据最近的一项理论工作[22],混合具有隐含的数据自适应正则化效果,比添加高斯噪声更好地促进泛化,高斯噪声是时间序列和视觉数据中常用的增强策略[76-78]。 尽管基于 mixup 的方法已在不同问题上取得了成功 [79, 80],例如域适应,但在数据具有非固定拓扑(例如序列、树和图)的域中,在输入空间中使用 mixup 创建样本是不可行的 [22]。 因此,最近的工作建议混合样本的隐藏表示,类似于Manifold Mixup [81]。 然而,该方法声称通过中间层“z = αz + (1 − α)~z”混合固定长度隐藏表示可以被解释为在另一个样本的方向上向给定样本添加噪声。 然而,这是一个过于乐观的说法,因为在训练早期,在大多数情况下,表示之间通常不存在线性可分离性,这种合成可能会导致隐藏的表示完全不同且远离样本[71, 82]。 因此,在这项工作中,考虑到混合方法对于准周期非平稳时间序列数据的局限性,我们采取了不同的方法并修改了混合方法。 此外,与大多数旨在使用对抗方法 [53, 48, 72] 或特征外推 [50, 71] 生成硬样本(接近类边界的样本)的现有方法不同,我们的方法寻求使用以下方法将语义上更接近的样本连接在一起 以定制的方式进行插值。

七、结论

在本文中,我们首先证明了线性混合对准周期时间序列数据的破坏性影响,然后引入一种新颖的定制混合方法来为对比学习公式生成正样本,同时防止这种破坏性影响并适当地对样本进行插值。 从理论上讲,我们表明我们提出的方法保证了对的插值,而不会导致任何信息丢失,同时生成不同的样本集。 根据经验,我们的方法在三个现实世界任务中优于先前的方法。 通过对对比学习和监督学习设置进行实验,我们表明我们的方法对于学习范式的选择是不可知的。 因此,它也具有为不同学习范式生成增强数据的潜力。 我们相信本文提出的方法有潜力显着改进各种时间序列任务的学习解决方案。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
我们使用欧拉公式将方程 16 展开到方程 17。对于方程 21 和 22,我们可互换地使用频率箱 (k) 和以 Hz 为单位的频率值 (f)。尽管上述证明是为了表明结果实例可能不包含任何任务 -相关信息,还可以证明,如果 phik 和 ωk 接近指示的关系,则增强过程可能会丢弃部分特定于任务的信息(不是全部)。

在这里插入图片描述
在这里插入图片描述
尽管该证明在假设2.1中忽略了相位混合对互信息的影响,但众所周知,相位分量携带语义上重要的特征[45]。 因此,需要注意的是,这个证明的目的是证明通过分别对相位和幅度分量应用混合,我们可以避免相消干扰。


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值