贝叶斯统计R语言操作3——假设检验

本文不涉及贝叶斯假设检验的理论推导,而是通过R语言实例操作来探讨其优点和应用。文章指出贝叶斯假设检验简单易懂,适合多重检验,并详细展示了如何使用R语言进行先验概率、后验概率、贝叶斯因子等计算,最终得出结论:体重超过175磅的可能性较大。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

此篇文章对于贝叶斯假设检验不做定义以及公式的推导,仅仅是想通过实例R语言操作来理解贝叶斯假设检验。


一、贝叶斯假设检验的优点

  • 简单,无需抽样分布和显著性水平
  • 可以推广至多重检验

二、R语言实例操作

1.题目叙述

  • Measurements~ N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2), μ \mu μ is true weight and σ \sigma σ = 3 pounds.
  • Interested in accessing if his true weight >175 pounds, test : H
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值