深度嵌入聚类 DEC 总结
Deep Embedded Cluster
概述
动机
一般的聚类算法例如K-means,GMM,这些方法速度快,适用于各种各样的问题, 但是,它们的距离度量仅限于原始数据空间,当输入维度较高时,它们往往无效。
DEC 同时学习使用深度神经网络的特征表示和聚类分配
DEC从数据空间学习映射到低维特征空间,在该特征空间中迭代地优化聚类目标
贡献
贡献:
(a)深度嵌入和聚类的联合优化;
(b)通过软分配进行新颖的迭代改进;
(c)得出聚类精度和速度方面最先进的聚类结果;
过程
概述
软分配
测量嵌入点和质心之间的相似度:
目标分布(辅助分布)
辅助分布用来衡量样本属于某个聚类的分布: