深度嵌入聚类 DEC 总结

Deep Embedded Cluster

概述

动机

一般的聚类算法例如K-means,GMM,这些方法速度快,适用于各种各样的问题, 但是,它们的距离度量仅限于原始数据空间,当输入维度较高时,它们往往无效。

DEC 同时学习使用深度神经网络的特征表示聚类分配

DEC从数据空间学习映射到低维特征空间,在该特征空间中迭代地优化聚类目标

贡献

贡献:
(a)深度嵌入和聚类的联合优化;
(b)通过软分配进行新颖的迭代改进;
(c)得出聚类精度和速度方面最先进的聚类结果;

过程

概述

在这里插入图片描述

软分配

测量嵌入点和质心之间的相似度:
在这里插入图片描述

目标分布(辅助分布)

辅助分布用来衡量样本属于某个聚类的分布:

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值