【算法讲2.5:拓欧求逆元】算法讲2的补充

前置知识

  • 拓展欧几里得
  • 逆元:在取模意义下 a x ≡ 1 ( m o d M O D ) ax\equiv1\pmod{MOD} ax1(modMOD) a a a 即为在模 M O D MOD MOD 意义下 x x x 的逆元

简单推导

  • 由于我们有拓展欧几里得算法,能方便求出该方程 a x + b y = c ax+by=c ax+by=c 的通解。
    我们想求 x x x 的逆元,本质就是求出 a x ≡ 1 ( m o d M O D ) ax\equiv1\pmod {MOD} ax1(modMOD),这时候的 a a a 为多少。
    如果方程在取模 M O D MOD MOD 意义下,方程一边加上 b b b 倍的 M O D MOD MOD,方程等号不会变,即变为:
    a × x + b × M O D ≡ c ( m o d M O D ) a\times x+b\times MOD\equiv c\pmod{MOD} a×x+b×MODc(modMOD)
  • 由于在取模意义下, 若存在逆元,则 c = gcd ⁡ ( x , M O D ) = 1 c=\pmb{\gcd(x,MOD)=1} c=gcd(x,MOD)=1gcd(x,MOD)=1gcd(x,MOD)=1
    注意0没有逆元,这一点也是满足上式的。
    式子变成 a x + b × M O D ≡ 1 ( m o d M O D ) ax+b\times MOD\equiv 1\pmod{MOD} ax+b×MOD1(modMOD)
  • 我们使用拓欧算法求出的系数 a a a 就直接是 x x x 的逆元了。注意该系数可能为负数,需要变成正数即可。

核心算法

ll ex_gcd(ll a,ll b,ll& x,ll& y)
{
    if(b==0)
    {
        x=1;y=0;
        return a;
    }
    ll ans=ex_gcd(b,a%b,x,y);
    ll tmp=x;
    x=y;
    y=tmp-a/b*y;
    return ans;
}
ll inv(ll a,ll mod)//存在逆元条件:gcd(a,mod)=1
{
    ll x,y;
    ll g=ex_gcd(a,mod,x,y);
    if(g!=1)return -1;
    return (x % mod + mod) % mod;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值