【算法讲21:轮廓线的状压DP入门】Campus Design | HDU4804

前置

  • d p dp dp 思想
    状压 d p dp dp 的基本内容
    一些二进制的基本运算

题目 ⌈ C a m p u s   D e s i g n ⌋ \color{red}\lceil Campus\ Design\rfloor Campus Design

题意

  • n × m n\times m n×m 的网格,每个格子如果是 1 1 1 ,表示为 ⌈ \lceil 空地 ⌋ \rfloor ;是 0 0 0,表示为 ⌈ \lceil ⌋ \rfloor
    你可以使用无数量限制的 1 × 2 1\times2 1×2 ⌈ \lceil 矩形砖块 ⌋ \rfloor (可以旋转成 2 × 1 2\times 1 2×1 的砖)
    你可以使用至少 c c c 个,至多 d d d 1 × 1 1\times 1 1×1 ⌈ \lceil 方形砖块 ⌋ \rfloor
    问你,用这些砖块不重叠放置,且四角只能放在格点上,铺满所有的空地而不铺到花上面的方案数
    答案取模 1 e 9 + 7 1e9+7 1e9+7

范围

  • 1 ≤ n ≤ 100 1\le n\le 100 1n100
    1 ≤ m ≤ 10 1\le m\le 10 1m10
    0 ≤ c ≤ d ≤ 20 0\le c\le d\le 20 0cd20

⌈ \lceil 轮廓线 d p dp dp ⌋ \rfloor

  • 看到列数,想到 2 m 2^m 2m 在范围之内就能很快想到用状压去做。
    但是易得我们的状态数为 d p [ n ] [ 2 m ] [ d ] dp[n][2^m][d] dp[n][2m][d]
    如果我们枚举相邻的两行,时间复杂度至少为 O ( n × m × 2 2 m × d ) = 2 e 10 O(n\times m\times 2^{2m}\times d)=2e10 O(n×m×22m×d)=2e10,肯定会 T L E \color{red}TLE TLE
    所以我们就想到,是不是能只枚举一行也能保存前面所有的状态呢?答案是可以的。
  • 如果我们枚举到 ( i , j ) (i,j) (i,j),那么枚举的状态集合 S S S 对应的是该位置前 m m m 个格子的放砖块的状态。
    如果 S S S 的第 x x x 位为 1 1 1,就表示第 x x x 列的白框的该位置我们放了砖块。反之就没有放砖。
    注意,不放砖可能是我们故意空着,也可能是该位置为花,没法放砖。
    在这里插入图片描述
  • 接下来,我们考虑状态转移
    • 如果 t u [ i ] [ j ] = 1 tu[i][j]=1 tu[i][j]=1,表示该位置是 ⌈ \lceil 空地 ⌋ \rfloor 。决策:竖着放 1 ∗ 2 1*2 12 砖,横着放 2 ∗ 1 2*1 21 砖,放 1 ∗ 1 1*1 11 砖或者不放砖。
      • 如果 S S S 的第 j j j 位为 0 0 0,且 t u [ i − 1 ] [ j ] = 1 tu[i-1][j]=1 tu[i1][j]=1 表示该位置必须竖着放 1 ∗ 2 1*2 12 砖,否则上面的位置无法被覆盖。
      • 如果 S S S 的第 j j j 位为 1 1 1,且 S S S 的第 j − 1 j-1 j1 位为 0 0 0,表示该位置可以横着放 2 ∗ 1 2*1 21
      • 如果 S S S 的第 j j j 位为 1 1 1,表示该位置可以 1 ∗ 1 1*1 11
      • 如果 S S S 的第 j j j 位为 1 1 1,表示该位置可以不放砖
    • 如果 t u [ i ] [ j ] = 0 tu[i][j]=0 tu[i][j]=0,表示该位置是 ⌈ \lceil ⌋ \rfloor
      • 如果 S S S 的第 j j j 位为 0 0 0,表示该位置无法达成满足要求的情况。
      • 如果 S S S 的第 j j j 位为 1 1 1,表示该位置必须不放砖。
        在这里插入图片描述
  • 这样,经过该位置的转移之后,我们的轮廓线转移成功!
    经过一步一步的转移,就可以得到答案了。
    在这里插入图片描述
  • 还有一些细节的问题:
    • 这里,我们设 d p [ i ] [ j ] [ S ] [ T ] dp[i][j][S][T] dp[i][j][S][T] 表示枚举到第 i i i 行,第 j j j 列,轮廓线状态为 S S S,用的 1 ∗ 1 1*1 11 砖数量为 T T T,首先这样会 M L E \color{red}MLE MLE
      容易想到,枚举完某条轮廓线之后,上一条轮廓线就没有用了。
      我们直接设 d p [ s t ] [ S ] [ T ] dp[st][S][T] dp[st][S][T] 滚动数组即可。其中 s t = 0 st=0 st=0 表示目前轮廓线, s t = 1 st=1 st=1 表示下一条轮廓线。
    • 初状态,我们假设第 0 0 0 行全部都铺满砖,因为我们是从第 1 1 1 行开始枚举的。
      所以初状态为 d p [ s t ] [ ( 1 < < m ) − 1 ] [ 0 ] = 1 dp[st][(1<<m)-1][0]=1 dp[st][(1<<m)1][0]=1,方案数为 1 1 1
    • 末状态,对于最后一行,我们需要最后一条轮廓线的空位置都被填满
      答案即为 ∑ i = c d d p [ s t ] [ s h u ] [ i ] \sum_{i=c}^d dp[st][shu][i] i=cddp[st][shu][i],其中 s h u shu shu 表示最后一行空地都为 1 1 1的状态。

代码

  • 时间复杂度: O ( n × m × 2 m × d ) O(n\times m\times 2^m\times d) O(n×m×2m×d)
    空间复杂度: O ( n m + 2 m × d ) O(nm+2^m\times d) O(nm+2m×d)
    T i m e ( M s ) : 1326 / 8000 Time(Ms):1326/8000 Time(Ms):1326/8000
/*
 _            __   __          _          _
| |           \ \ / /         | |        (_)
| |__  _   _   \ V /__ _ _ __ | |     ___ _
| '_ \| | | |   \ // _` | '_ \| |    / _ \ |
| |_) | |_| |   | | (_| | | | | |___|  __/ |
|_.__/ \__, |   \_/\__,_|_| |_\_____/\___|_|
        __/ |
       |___/
*/
const ll MOD = 1e9+7;
ll dp[2][(1<<12)][25];
char tu[105][20];
int shu;
int main()
{
    int n,m,c,d;
    while(~scanf("%d%d%d%d",&n,&m,&c,&d)){
        for(int i = 1;i <= n;++i)scanf("%s",tu[i]);
        shu = 0;
        for(int j = 0;j < m;++j){
            if(tu[n][j] == '1')shu |= (1<<j);
        }
        memset(dp,0,sizeof(dp));
        dp[0][(1<<m)-1][0] = 1;
        int st = 0;
        for(int i = 1;i <= n;++i)for(int j = 0;j < m;++j){
            for(int S = 0;S < (1<<m);++S){
                for(int T = 0;T <= d;++T){
                    /// 空过
                    if(tu[i][j] == '0'){
                        if(i >=2 && tu[i-1][j] == '1' && !(S&(1<<j)))dp[st^1][S][T] = 0;
                        else dp[st^1][S&(~(1<<j))][T] = (dp[st^1][S&(~(1<<j))][T] + dp[st][S][T]) % MOD;

                    }
                    else{
                        /// 上面要填 1*2 必须填
                        if(i >=2 && tu[i-1][j] == '1' && !(S&(1<<j)))
                            dp[st^1][S|(1<<j)][T] = (dp[st^1][S|(1<<j)][T] + dp[st][S][T]) % MOD;
                        else{
                            /// 横着填 2*1
                            if(j && tu[i][j-1] == '1' && !(S&(1<<j-1)))
                                dp[st^1][S|(1<<j-1)|(1<<j)][T] = (dp[st^1][S|(1<<j-1)|(1<<j)][T] + dp[st][S][T]) % MOD;
                            /// 填 1*1
                            dp[st^1][S|(1<<j)][T+1] = (dp[st^1][S|(1<<j)][T+1] + dp[st][S][T]) % MOD;
                            /// 不填
                            dp[st^1][S&(~(1<<j))][T] = (dp[st^1][S&(~(1<<j))][T] + dp[st][S][T]) % MOD;
                        }
                    }
                }
            }
            for(int S = 0;S < (1<<m);++S)
                for(int T = 0;T <= d;++T){
                    dp[st][S][T] = dp[st^1][S][T];
                    dp[st^1][S][T] = 0;
                }
        }
        ll res = 0;
        for(int T = c;T <= d;++T)
            res = (res + dp[st][shu][T]) % MOD;
        printf("%lld\n",res);
    }
    return 0;
}
  • 4
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值