学习过程中需要不断的总结~~
概述
(1)定积分:定积分是积分的一种,是函数f(x)在区间【a,b】上积分和的极限
(2)二重积分:二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限,本质是求曲顶柱体的体积
(3)三重积分:设三元函数f(x,y,z)在区域Ω上具有一阶连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为ri(i=1,2,3…n),体积记为Δδi,记||T||=max{ri},在每个小区域内取点f(ξi,ηi,ζi),作和式Σf(ξi,ηi,ζi)Δδi,若该和式当||T||→0时的极限存在且唯一(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz。
几何意义
(1)定积分:表示曲面图形的面积
(2)二重积分:表示曲顶柱体的体积
(3)三重积分:表示立体的质量
注:
平面区域的二重积分可以推广到高维空间(有向)曲面上进行积分,称为曲面积分;
下面进入正题喽~~~
- 先来讲一讲二重积分-——--------------------------------
二重积分的几何意义:
曲顶柱体的体积(分割近似求和取极限)(因为二重积分的积分区域为平面区域)
(平行截面面积为已知的立体求体积)
二重积分的物理意义:
平面薄么片的质量
二重积分计算方法:
极坐标系计算二重积分(当所求面积为类圆图:圆,椭圆,扇形,圆环,圆环的一部分均可用此法)。
极角是按照逆时针方向转动。
-
三重积分积分区域为空间立体。
三重积分的计算方法:先重后单适用于
(1)被积函数与x,y无关。
(2)二重积分容易计算时,用截面法方便 -
曲线积分:既可以在二维空间用二重积分计算,又可在三维空间用三重积分计算
定积分积分下限一定小于积分上限。 -
曲面积分:三维空间中的曲面