给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出从1号点到n号点的最多经过k条边的最短距离,如果无法从1号点走到n号点,输出impossible。
注意:图中可能 存在负权回路 。
输入格式
第一行包含三个整数n,m,k。
接下来m行,每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。
输出格式
输出一个整数,表示从1号点到n号点的最多经过k条边的最短距离。
如果不存在满足条件的路径,则输出“impossible”。
数据范围
1≤n,k≤500,
1≤m≤10000,
任意边长的绝对值不超过10000。
输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=510,M=1e4+10,INF=0x3f3f3f3f;
struct Edge{
int a,b,c;
}edges[M];
int n,m,k;
int dist[N],last[N];
void bellman_ford(){
memset(dist,INF,sizeof(dist));
dist[1]=0;
for(int i=0;i<k;i++){
memcpy(last,dist,sizeof(dist));
for(int j=0;j<m;j++){
auto e=edges[j];
dist[e.b]=min(dist[e.b],last[e.a]+e.c);
}
}
}
int main(){
cin>>n>>m>>k;
for(int i=0;i<m;i++){
int a,b,c;
cin>>a>>b>>c;
edges[i]={a,b,c};
}
bellman_ford();
if(dist[n]>INF/2) puts("impossible");
else cout<<dist[n]<<endl;
return 0;
}