有边数限制的最短路(bellman-ford算法)

题目链接

给定一个n个点m条边的有向图,图中可能存在重边和自环, 边权可能为负数。

请你求出从1号点到n号点的最多经过k条边的最短距离,如果无法从1号点走到n号点,输出impossible。

注意:图中可能 存在负权回路 。

输入格式
第一行包含三个整数n,m,k。

接下来m行,每行包含三个整数x,y,z,表示存在一条从点x到点y的有向边,边长为z。

输出格式
输出一个整数,表示从1号点到n号点的最多经过k条边的最短距离。

如果不存在满足条件的路径,则输出“impossible”。

数据范围
1≤n,k≤500,
1≤m≤10000,
任意边长的绝对值不超过10000。

输入样例:
3 3 1
1 2 1
2 3 1
1 3 3
输出样例:
3

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;
const int N=510,M=1e4+10,INF=0x3f3f3f3f;
struct Edge{
    int a,b,c;
}edges[M];
int n,m,k;
int dist[N],last[N];

void bellman_ford(){
    memset(dist,INF,sizeof(dist));
    dist[1]=0;
    for(int i=0;i<k;i++){
        memcpy(last,dist,sizeof(dist));
        for(int j=0;j<m;j++){
            auto e=edges[j];
            dist[e.b]=min(dist[e.b],last[e.a]+e.c);
        }
    }
}

int main(){
    cin>>n>>m>>k;
    for(int i=0;i<m;i++){
        int a,b,c;
        cin>>a>>b>>c;
        edges[i]={a,b,c};
    }
    bellman_ford();
    if(dist[n]>INF/2) puts("impossible");
    else cout<<dist[n]<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值