循环神经网络学习笔记

RNN是为了处理序列数据而生,能够顺序获取序列之间的关系,但是也存在处理过长序列会引起梯度消失、梯度爆炸,信息丢失问题。
为了解决RNN的问题,LSTM就诞生了,LSTM主要是通过遗忘门,输入门,输出门来解决这些问题。
遗忘门主要是来控制记住什么信息,忘记什么信息。比如我今天下午去游泳,对于泳字来说只有游字是重要的,前面的几个字不重要,这时遗忘门就要告知泳字前面几个字是不重要的。
输入门主要是用来确定当前时刻的输入有哪些信息保存下来,比如我今天下午去游,对于此时的输入来说我今天下午去是不需要的只要把游字保存下来。
遗忘门+输入门就等于把序列前期保存的记忆和当前的记忆相加,保存在一起
输出门就是控制(遗忘门+输入门)的输出结果有多少输出到当前状态,成为下个字的输入,比如(遗忘门+输入门)的输出结果是我下午去游,通过输出门来决定是传我下午去游这几个字还是传游这个字去到下一个字当输入,即Ht
在这里插入图片描述
RNN简单视频学习笔记:
这个代码讲解应该放到LSTM讲解之后进行最合适,因为这个代码讲解例子是基于LSTMCELL的,其实就是证明遗忘门、输入门、输出门的作用。证明LSTM能记住应该记住的,忘记应该忘记的。
LSTM_Minist单

【为什么要学习这门课程】深度学习框架如TensorFlow和Pytorch掩盖了深度学习底层实现方法,那能否能用Python代码从零实现来学习深度学习原理呢?本课程就为大家提供了这个可能,有助于深刻理解深度学习原理。左手原理、右手代码,双管齐下!本课程详细讲解深度学习原理并进行Python代码实现深度学习网络。课程内容涵盖感知机、多层感知机、卷积神经网络循环神经网络,并使用Python 3及Numpy、Matplotlib从零实现上述神经网络。本课程还讲述了神经网络的训练方法与实践技巧,且开展了代码实践演示。课程对于核心内容讲解深入细致,如基于计算图理解反向传播算法,并用数学公式推导反向传播算法;另外还讲述了卷积加速方法im2col。【课程收获】本课程力求使学员通过深度学习原理、算法公式及Python代码的对照学习,摆脱框架而掌握深度学习底层实现原理与方法。本课程将给学员分享深度学习的Python实现代码。课程代码通过Jupyter Notebook演示,可在Windows、ubuntu等系统上运行,且不需GPU支持。【优惠说明】 课程正在优惠中!  备注:购课后可加入白勇老师课程学习交流QQ群:957519975【相关课程】学习本课程的前提是会使用Python语言以及Numpy和Matplotlib库。相关课程链接如下:《Python编程的术与道:Python语言入门》https://edu.csdn.net/course/detail/27845《玩转Numpy计算库》https://edu.csdn.net/lecturer/board/28656《玩转Matplotlib数据绘图库》https://edu.csdn.net/lecturer/board/28720【课程内容导图及特色】
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值